Global solvability for a class of complex vector fields on the cylinder

Paulo L. Dattori da Silva*

Depart. of Physics and Mathematics/Faculty of Philosophy, Sciences and Letters of Ribeirao Preto,

University of Sao Paulo Avenida dos Bandeirantes, 3900, 14040-901, Ribeirao Preto Brazil

dattori@ffclrp.usp.br

Abstract:

Let \mathcal{L} be a nonsingular complex vector field defined on a smooth, paracompact, noncompact, two-dimensional manifold Ω . Assume that \mathcal{L} satisfies the *Nirenberg-Treves* condition (\mathcal{P}) .

We say that \mathcal{L} is *globally solvable* if

$$\mathcal{L}: C^{\infty}(\Omega) \to C^{\infty}(\Omega)$$

has closed image; if, moreover, $\dim(\ker{}^t\mathcal{L}) < \infty$ then we say that \mathcal{L} is *strongly solvable*.

It is known that condition (P) is necessary to strong solvability.

It was proved by Hounie (extending results due to Malgrange and Hörmander) that if

(\sharp) no orbit is relatively compact in Ω .

then $\mathcal{L}C^{\infty}(\Omega) = C^{\infty}(\Omega)$; consequently, \mathcal{L} is strongly solvable.

In this lecture we will deal with strong solvability of a class of complex vector fields defined on the cylinder $\Omega = \mathbb{R} \times S^1$, for which (\sharp) fails.

The results that will be showed here are part of a joint work with Professor Adalberto P. Bergamasco (ICMC/USP).

*The author was partially supported by FAPESP