Dispersion for 3D wave equation with a potential in an exterior domain

Tokio Matsuyama

Department of Mathematics Tokai University 4-1-1 Kitakaname, Hiratsuka, Kanagawa Japan

tokio@keyaki.cc.u-tokai.ac.jp

Abstract: Let Ω be an exterior domain of \mathbb{R}^3 such that $\mathbb{R}^3 \setminus \Omega$ is compact and $0 \notin \overline{\Omega}$. Throughout this talk, we will always assume that $\mathbb{R}^3 \setminus \Omega$ is convex. We consider the initial-boundary value problem, for a function u = u(t, x):

$$\partial_t^2 u - \Delta u + V(x)u = F(t, x), \quad t \neq 0, \quad x \in \Omega, \tag{1}$$

with the initial condition

$$u(0,x) = f_0(x), \quad \partial_t u(0,x) = f_1(x),$$
 (2)

and the boundary condition

$$u(t,x) = 0, \quad t \in \mathbb{R}, \quad x \in \partial\Omega.$$
 (3)

We will always assume that V is a real-valued measurable function on Ω satisfying

$$-c_0|x|^{-\delta_0} \le V(x) \le c_1|x|^{-\delta_0}$$

for some constants $0 < c_0 < 1/4$, $c_1 > 0$ and $\delta_0 > 3$. The purpose of this talk is to give the dispersive and Strichartz estimates for (1)–(3).