

## MINISTÉRIO DE EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA



# PLANEJAMENTO PARA O PERÍODO ESPECIAL Semestre 2 - 2020

Código e nome da disciplina: MATE 7053 - Teoria Matemática da Dinâmica dos Fluidos

Professor: Roberto Ribeiro Santos Junior

Contato: robertoufs@gmail.com e/ou (41) 9 9520-6466

Período: 01/09 - 18/12/2020

Número de créditos: 4 carga horária: 60 horas

# Cronograma:

| Oronogrania. |                                                                                      |
|--------------|--------------------------------------------------------------------------------------|
| Semana       | Conteúdo                                                                             |
| 1            | Apresentação do curso. Forças elementares no corpo de um fluido. Definição de        |
|              | formação Euleriana e Lagrangiana.                                                    |
| 2            | As equações de Euler.                                                                |
| 3            | Linhas de corrente e Teorema de Bernoulli. Rotação e vorticidade.                    |
| 4            | Equações governantes de ondas aquáticas. Adimensionalização. Teoria linear.          |
| 5            | A relação de dispersão. Ondas aquáticas lineares: relação de dispersão.              |
| 6            | Análise assintótica. Ondas de Stokes                                                 |
| 7            | As equações de Boussinesq e KdV.                                                     |
| 8            | Onda solitária e grandezas conservadas.                                              |
| 9            | A relação de dispersão dos modelos de Boussinesq. Transformada de Fourier periódica. |
| 10           | A transformada de Fourier discreta. Derivação espectral. A FFT no matlab.            |
| 11           | Métodos numéricos espectrais para EDPs clássicas.                                    |
| 12           | Método numérico para dinâmica de ondas aquáticas lineares. Operador DtN.             |
| 13           | Equações de águas rasas                                                              |
| 14           | Implementação numérica.                                                              |
| 15           | Mapeamento conforme e EDP.                                                           |

#### Metodologia:

A condução da turma será feita por meio da plataforma Moodle, disponível na UFPRVirtual, e seguirá os seguintes procedimentos:

- A carga horária da semana está divididade em 4 horas de atividades síncronas.
- No começo de cada semana serão divulgadas na platafroma do curso (UFPR Virtual) instruções indicando o material (textos e exercícios) que os alunos devem estudar durante a semana.
- A turma terá 2 horas por semana de monitoria, cuja participação é facultativa, em horário a ser definido na primeira semana do curso. Cabe destacar que essa atividade não será contabilizada na carga horária da disciplina.

Horário e plataforma do momento síncrono: Os momentros síncronos serão via Google Meet. O horário pode ser qualquer um desses abaixo (em ordem de preferência):

- 1)Terças e Quintas das 13:30 as 15:30
- 2) Terças e Quintas das 15:30 as 17:30
- 3)Terças e Quintas das 08:00 as 10:00
- 3)Terças e Quintas das 07:30 as 09:30

Formas de avaliação: Uma prova escrita (a ser aplicada remotamente), listas de exercícios e um trabalho numérico.

### Principais referências:

- CHORIN, A.; MARSDEN, J. A Mathematical Introduction to Fluid Mechanics. Springer, 1993.
- BATCHELOR, G. An Introduction to Fluid Dynamics. Cambridge University Press, 1999
- ACHESON, D. J. Elementary Fluid Dynamics, Oxford University Press, 1990.
- DEBNATH, L. Nonlinear Parital Differential Equations for Scientists and Engineers. 3ed. Springer, 2012.
- JOHNSON, R. S. A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997.
- VANDEN-BROECK, J.-M. Gravity-Capillary Free-Surface Flows. Caambridge University Press, 2010.

Observação: Se antes do final do semestre sejam autorizadas as atividades presenciais, as aulas e avaliações poderão retornar à forma presencial.