Exame de qualificação - PPGMA - 27/08/2012

Instruções:

- Resolva 5 das questões abaixo (2,0 pontos cada).
- As soluções devem conter o desenvolvimento e/ou justificativas.

Questões:

- 1. Considere $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x) = a \operatorname{sen} x_1 \operatorname{sen} x_2 + e^{x_1^2 + x_2^2}$, onde $a \in \mathbb{R}$ e $\bar{x} = 0 \in \mathbb{R}^2$. Mostre que:
 - (a) Se $a \in (-2, 2)$, então \bar{x} é minimizador local de f;
 - (b) Se |a| > 2, então \bar{x} é ponto de sela de f;
 - (c) Verifique se para algum valor de a, o ponto \bar{x} pode ser maximizador local de f.
- 2. Considere $f: \mathbb{R}^n \to \mathbb{R}$ dada por $f(x) = \frac{1}{2}x^TAx + b^Tx + c$, onde $A \in \mathbb{R}^{n \times n}$ é uma matriz simétrica definida positiva, $b \in \mathbb{R}^n$ e $c \in \mathbb{R}$.
 - (a) Mostre que se $\nabla f(x)^T d = 0$, então a função cresce a partir de x ao longo de d;
 - (b) Suponha que d é uma direção de descida a partir de x. Mostre que a busca exata fornece $t^* = -\frac{\nabla f(x)^T d}{d^T A d}$;
 - (c) Suponha que d é uma direção de descida a partir de x. Mostre que se t^* satisfaz a condição de Armijo

$$f(x + t^*d) \le f(x) + \eta t^* \nabla f(x)^T d,$$

então
$$\eta \leq \frac{1}{2}$$
.

- 3. Seja $f: \mathbb{R} \to \mathbb{R}$ tal que f'(x) > 0 e f''(x) > 0, para todo $x \in \mathbb{R}$. Suponha que existe $x^* \in \mathbb{R}$ tal que $f(x^*) = 0$.
 - (a) Mostre que qualquer que seja o ponto inicial $x^0 \in \mathbb{R}$, a sequência gerada pelo método de Newton satisfaz $f(x^k) > 0$ e $x^k > x^*$, para todo $k \ge 1$; (sugestão: use a convexidade de f)
 - (b) Mostre que $x^* < x^{k+1} < x^k$, para todo $k \ge 1$ e conclua que $x^k \to x^*$.
- 4. Seja $A \in \mathbb{R}^{n \times n}$ uma matriz definida positiva.
 - (a) Defina vetores A-conjugados;
 - (b) Prove que um conjunto qualquer de vetores A-conjugados não nulos é linearmente independente;
 - (c) Calcule as direções conjugadas para

$$f(x) = \frac{x_1^2}{2} - x_1 x_3 + x_2^2 + \frac{3x_3^2}{2} - 2x_1 + x_3$$

a partir de $x^0 = 0 \in \mathbb{R}^3$, pelo algoritmo de gradientes conjugados.

5. Considere o seguinte problema de otimização com restrições

min
$$x_1^2 + (x_2 - 1)^2$$

sujeito a $x_2 \le x_1^2$.

- (a) Encontre os 3 pontos estacionários deste problema, por meio das condições de KKT;
- (b) Prove que um deles é ponto de sela e que os outros dois são minimizadores globais;
- (c) Faça uma representação geométrica.
- 6. Considere os problemas

min
$$f(x) = x_1^2 + x_2^2 + x_3^2$$
 sujeito a $x_1x_2x_3 = 1$
$$x_1^2 + x_2^2 + x_3^2 \le 3.$$
 (1)

е

min
$$f(x) = x_1^2 + x_2^2 + x_3^2$$

sujeito a $x_1 x_2 x_3 = 1$. (2)

- (a) Mostre que o problema (1) tem um minimizador global $x^* \in \mathbb{R}^3$;
- (b) A partir de x^* , encontre outros 3 minimizadores globais para o problema (1);
- (c) Mostre que qualquer um deles também é minimizador global para o problema (2).

Algoritmo 1 Gradientes conjugados para minimizar $f(x) = \frac{1}{2}x^TAx + b^Tx + c$

Dado
$$x^0 \in \mathbb{R}^n$$
, faça $d^0 = -\nabla f(x^0)$
 $k = 0$
REPITA enquanto $\nabla f(x^k) \neq 0$
 $t_k = \operatorname*{argmin}_{t \in \mathbb{R}} \left\{ f(x^k + td^k) \right\}$
 $x^{k+1} = x^k + t_k d^k$
 $\beta_k = \frac{(d^k)^T A \nabla f(x^{k+1})}{(d^k)^T A d^k}$
 $d^{k+1} = -\nabla f(x^{k+1}) + \beta_k d^k$
 $k = k+1$