Exame de Qualificação Álgebra Linear Aplicada

1. Seja $A \in R^{m \times n}$, $A = [a_1, \ldots, a_n]$, $m \ge n$, e de posto completo. Suponha A = QR, $Q = [q_1, \ldots, q_n] \in R^{m \times n}$, com as colunas de Q sendo ortonormais entre si e $R \in R^{n \times n}$ é triangular superior com diagonal positiva. Particione as matrizes como

$$A = [\tilde{A}|a_n], \quad Q = [\tilde{Q}|q_n] \quad R = \begin{pmatrix} \tilde{R} & s \\ 0 & r_{nn} \end{pmatrix}.$$

Construa um algoritmo para calcular q_n , conhecidos q_1, \ldots, q_{n-1} . Mostre que esse algoritmo é exatamente o Gram-Schmidt clássico.

2. Seja $U\Sigma V$ a decomposição SVD de $A\in R^{m\times n}$, com posto(A)=k. Mostre que a pseudoinversa de A é dada por

$$A^+ = \sum_{j=1}^k \sigma_j^{-1} v_j u_j^T$$

e utiliza este resultado para achar a solução de

$$\min \|Ax - b\|_2.$$

Também dê ba interepretação geometrica sobre este resultado.

- 3. Para cada afirmação abaixo, prove-a ou dê um contra-exemplo.
 - (a) Se λ é autovalor de A e $\mu \in C$, então $\lambda \mu$ é autovalor de $A \mu I$.
 - (b) Se $A \in \mathbb{R}^{n \times n}$ e λ é autovalor de A, então $-\lambda$ também é autovalor de A.

- (c) Se $A \in \mathbb{R}^{n \times n}$ e λ é autovalor de A, então $\bar{\lambda}$ também é.
- (d) Se λ é autovalor de A e A é não-singular, então λ^{-1} é autovalor de $A^{-1}.$
- (e) Se $A \in R^{n \times n}$ e λ é autovalor de A, então λ também é autovalor de $A^T.$
- (f) Se $A \in \mathbb{R}^{n \times n}$ e x é autovetor de A, então x também é autovetor de A^T .
- (g) Se todos os autovalores de A são nulos, então A=0.
- (h) Se A é diagonalizável e todos seus autovalores são iguais, então A é diagonal.