Programa de Pós-graduação em Matemática Aplicada Exame de Qualificação de Álgebra Linear Aplicada 25/08/2009

- 1. (2,0) Considere $\Omega = \mathbb{R}^n \setminus \{0\}$.
 - (a) Sejam $v \in \Omega$ e $A = vv^T$. Encontre todos os autovalores e autovetores de A.
 - (b) Sejam $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica e $q: \Omega \to \mathbb{R}$ definida por $q(x) = \frac{x^T A x}{x^T x}$. Sendo $\lambda_1 \leq \ldots \leq \lambda_n$ os autovalores de A, mostre que

$$\lambda_1 = \min_{x \in \Omega} q(x)$$
 e $\lambda_n = \max_{x \in \Omega} q(x)$.

- 2. (1,5) Seja $A \in \mathbb{R}^{n \times n}$ uma matriz de posto 1. Mostre que existem $u, v \in \mathbb{R}^n$ tais que $A = uv^T$.
- 3. (1,5) Seja $A \in \mathbb{R}^{n \times n}$ uma matriz simétrica definida positiva. Suponha que uma sequência $(x_k)_{k \in \mathbb{N}}$ é tal que $x_k^T A x_k \to 0$. Mostre que $x_k \to 0$. Este resultado continua válido se a matriz A for apenas semi-definida positiva?
- 4. (1,5) Seja $A \in \mathbb{R}^{m \times n}$. Sendo $||A||_2 = \sup_{||x||_2=1} ||Ax||_2$, mostre que $||A||_2$ é o maior valor singular de A.
- 5. (1,5) Determine as decomposições LU e QR da matriz $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.
- 6. (2,0) Seja $v \in \mathbb{R}^n$, $v \neq 0$. Considere a transformação de Householder $P = I \frac{2}{v^T v} v v^T$.
 - (a) Mostre que P é simétrica e ortogonal.
 - (b) Mostre que P é uma reflexão relativamente ao hiperplano $\pi=v^{\perp}.$
- 7. (1,5) Mostre que o conjunto das matrizes não singulares é denso em $\mathbb{R}^{n\times n}$, isto é, dados $A \in \mathbb{R}^{n\times n}$ e $\varepsilon > 0$, existe $B \in \mathbb{R}^{n\times n}$, não singular, tal que $\|B A\|_2 < \varepsilon$. (Sugestão: use decomposição de valor singular.)

BOA PROVA