Programa de Pós-graduação em Matemática Aplicada Exame de Qualificação em Álgebra Linear Aplicada 30/03/2012

1. Seja
$$A = (a_{ij}) \in \mathbb{R}^{n \times n}$$
 e $||v||_1 = \sum_{i=1}^n |v_i|$ a norma-1 em \mathbb{R}^n .

Mostre que a norma matricial induzida por esta norma vetorial satisfaz

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|.$$

- 2. Faça o que se pede:
 - (a) Estabeleça duas condições para uma matriz simétrica $A \in \mathbb{R}^{n \times n}$ ser definida positiva.
 - (b) Mostre que essas condições são equivalentes.
- 3. Sejam A e B matrizes reais de ordem n. Determine se são verdadeiras ou falsas as seguintes afirmações:
 - (a) A não pode ser similar a A + I.
 - (b) Se A e B são similares $\Rightarrow posto(A) = posto(B)$.
 - (c) $A \in B$ são similares $\Leftrightarrow A^2 \in B^2$ são similares.
- 4. Seja $A \in \mathbb{R}^{m \times n}$. A pseudo-inversa de A é a matriz A^+ tal que $AA^+A = A$ e $A^+AA^+ = A^+$ (A^+A e AA^+ são simétricas).
 - (a) Use a SVD para dar uma expressão para a pseudo-inversa da matriz A.
 - (b) Mostre que AA^+ é a matriz de projeção ortogonal sobre $Im(A) \subset \mathbb{R}^m$.
 - (c) Mostre que A^+A é a matriz de projeção ortogonal sobre $Im(A^+)\subset \mathbb{R}^n$.
- 5. Seja $v \in \mathbb{R}^n$, $v \neq \vec{0}$. Encontre os autovalores da transformação de Householder $P = I (2/v^T v)vv^T$, indicando a multiplicidade de cada autovalor encontrado.
- 6. Mostre, usando o teorema de Gershgorin, que
 - (a) se $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ é tal que $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$ para $i = 1, \dots, n$, então A é não singular.
 - (b) a matriz $A = \begin{bmatrix} 9 & 1 & -2 & 1 \\ 0 & 8 & 1 & 1 \\ -1 & 0 & 7 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$ possui pelo menos dois autovalores reais.