UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA

Exame de qualificação

Programa de Pós-Graduação em Matemática e Matemática Aplicada Álgebra Linear Numérica

Professores: Ailin Ruiz de Zarate Fabregas e Luiz Carlos Matioli

Instruções:

- 1. A prova deve ser entregue até _____.
- 2. Não é permitido o uso de calculadoras e telefones celulares.
- 3. Responda as 4 primeiras questões e escolha mais uma entre as questões 5 e 6.
- 4. Cada questão escolhida vale 2 pontos. Total da prova: 10 pontos.
- 5. Justifique todas as respostas.
- 6. Escreva de forma visível e com letra legível.

Questões:

- 1. Suponha que $p_n(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ é o polinômio característico de uma matriz não singular A. Mostre que a inversa de A tem a forma $A^{-1} = \beta_1 I + \beta_2 A + \cdots + \beta_n A^{n-1}$, ou seja é um polinômio em A de grau n-1 e escreva os coeficientes β_i , $i=1\ldots n$ a partir dos coeficientes a_j , $j=1\ldots n$.
- 2. Para uma matriz $A \in \mathbf{R}^{m \times n}$ dada, existe uma única B chamada de sua inversa generalizada que satisfaz as seguintes quatro condições:

$$ABA = A$$
, $BAB = B$, $(AB)^T = AB$, $(BA)^T = BA$.

Suponha que $A=U\Sigma V^T$. Mostre que $B=V\Sigma^{\dagger}U^T$ é a inversa generalizada de A, em que U e V são ortogonais e

$$\Sigma = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \in \mathbf{R}^{m \times n} \text{ e } \Sigma^{\dagger} = \begin{pmatrix} D^{-1} & 0 \\ 0 & 0 \end{pmatrix} \in \mathbf{R}^{n \times m}.$$

3. Seja A uma matriz quadrada. Defina $A_0 = A = Q_0 R_0$ como sua decomposição QR. Então $A_{k+1} = R_k Q_k$, onde $A_k = Q_k R_k$ é a decomposição QR de A_k . Mostre que A_{k+1} é similar a A.

4. Escreva um algoritmo para a decomposição QL de uma matriz $A \in \mathbf{R}^{m \times n}$ (A = QL), onde Q é ortogonal e L é triangular inferior. Aplique o algoritmo que escreveu para obter a decomposição QL da seguinte matriz:

$$A = \left(\begin{array}{cc} -4 & -2\\ 0 & 1\\ 5 & -1\\ -1 & 4 \end{array}\right).$$

ESCOLHA UMA DAS QUESTÕES EMBAIXO PARA RESOLVER:

- 5. Seja $y \in \mathbb{R}^n$ e $N(y,k) = I ye_{n-k}^T \in \mathbb{R}^{n \times n}$. Determine o que se pede:
 - (i) Uma fórmula para $N(y,k)^{-1}$ caso exista.
 - (ii) Dado $x \in \mathbb{R}^n,$ em que condições y pode ser determinado tal que $N(y,k)x = e_k?$
 - (iii) Usando N(y,k), forneça um algoritmo que sobrescreve A com A^{-1} . Quais condições sobre A asseguram o sucesso do seu algoritmo?
- 6. Considere a transformação de Householder generalizada

$$P = I - axy^T.$$

Determine o que se pede:

- (i) Quais condições sobre x e y asseguram $||Pu||_2 = ||u||_2$, para todo $0 \neq u \in \mathbb{R}^n$.
- (ii) Determine x tal que $Pu = ke_k$ onde $k = ||u||_2$ para $u \neq 0$ dado.
- (iii) Obtenha P^{-1} .

QUESTÃO ESCOLHIDA: _____.

BOA PROVA!