UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA

Programa de Pós-Graduação em Matemática

Exame de Qualificação. Equações Diferenciais Parciais. 19/04/2016

Professores: Jurandir Ceccon, Cléber de Medeira e Ailín Ruiz de Zárate

NOME:		
NUME:		

Instruções:

- 1. A prova deve ser entregue até 11:30.
- 2. Não é permitido o uso de calculadoras e telefones celulares.
- 3. Justifique rigorosamente cada resposta.

Ouestões:

1. (2 pontos) Considere a Equação da onda unidimensional bidirecional $u_{tt} - c^2 u_{xx} = 0$, c > 0, no domínio aberto e convexo $\{(x,t) \in \mathbb{R}^2, t > 0\}$. Deduza a Fórmula de D'Alembert para o Problema de Valor Inicial

$$u_{tt} - c^2 u_{xx} = 0, \qquad x \in \mathbb{R}, \ t > 0,$$

com dados iniciais u(x, 0) = f(x) e $u_t(x, 0) = g(x)$.

2. (3 pontos) Considere a Equação Diferencial Parcial (EDP) na forma divergente:

$$\nabla \cdot (S(u), R(u)) = 0,$$

onde $u(x, y) \in C^1(\mathbb{R}^2)$ e S, R são funções suaves $C^1(\mathbb{R})$.

- (a) Escreva a EDP correspondente na forma usual envolvendo u_x , u_y .
- (b) Qual é a relação a ser satisfeita por S e R para termos a equação de Burgers não viscosa $u_y + u u_x = 0$? A escolha R(u) = u, $S(u) = u^2/2$ satisfaz essa relação?
- (c) Obtenha a lei de conservação

$$\frac{d}{dy}\int_{a}^{b}R(u(x,y))dx+S(u(b,y))-S(u(a,y))=0.$$

- (d) Suponha agora que u(x, y) satisfaz a Lei de conservação acima no caso R(u) = u, $S(u) = u^2/2$, sendo u **descontínua** na curva $x = \xi(y)$ através da qual u experimenta um salto (choque). Denote por u^+ e u^- os limites de u(x, y) quando (x, y) aproxima-se de $(\xi(y), y)$ pela direita e esquerda respectivamente. Qual é a velocidade do choque?
- 3. (3 pontos) Considere o problema de condução de calor em uma barra infinita com temperatura inicial $f: \mathbb{R} \to \mathbb{R}$,

$$\begin{cases} u \in C^2(\mathbb{R} \times (0, +\infty)) \cap C(\mathbb{R} \times [0, +\infty)) \ limitada \\ u_t = u_{xx}, \qquad (x, t) \in \mathbb{R} \times (0, +\infty) \\ u(x, 0) = f(x), \ x \in \mathbb{R}. \end{cases}$$

- (a) Aplique o método de Transformada de Fourier ao problema para achar a candidata a solução.
- (b) Escreva a candidata achada no item anterior como uma convolução envolvendo o Núcleo do calor.
- (c) Prove que o Núcleo do calor é de classe C^{∞} e satisfaz a equação do calor na reta.
- (d) Prove que a candidata a solução é de fato solução, ou seja, prove que *u* pertence ao espaço de funções do enunciado, é limitada e satisfaz a EDP e a condição inicial.
- 4. (2 pontos) Seja $\mathcal{S}(\mathbb{R})$ o espaço de Schwartz ou das funções C^{∞} rapidamente decrescentes. Prove que se $f \in \mathcal{S}(\mathbb{R})$ e

$$f(0) = 0,$$

então existe $g \in \mathcal{S}(\mathbb{R})$ tal que f(x) = xg(x).