Primeiro Exame de Qualificação (Doutorado) - Álgebra - 2012

Data: 21/12/2012

Faça 4 das questões a seguir.

- 1. Seja k um corpo, $M_n(k)$ a k-álgebra de matrizes $n \times n$, e considere o $M_n(k)$ -módulo à direita $M_n(k)$. Para cada i entre 1 e n, seja L_i o subespaço linha associado em $M_n(k)$ (isto é, a matriz $(a_{k,l})$ está em L_i se e somente se $a_{k,l} = 0$ para todo $k \neq i$ e todo l).
 - (a) Para cada $x \neq 0$ em L_i e cada $y \in L_i$, mostre que existe uma aplicação k-linear $f: L_i \to L_i$ tal que f(x) = y. (sugestão: comece por considerar uma base de L_i (como k-espaço) que contém x).
 - (b) Conclua que $xM_n(k) = L_i$.
 - (c) Use os itens anteriores para provar que $M_n(k)$ é uma k-álgebra semissimples.
- 2. Seja A uma k-álgebra.
 - (a) Prove que um A-módulo I é injetivo se e somente se toda sequência exata curta

$$0 \to I \to M \to N \to 0$$

de A-módulos é cindida.

- (b) Considere dois morfismos de A-módulos $f:L\to M, g:L\to I$, com I injetivo. Mostre que se f é monomorfismo então o pushout de f e g é isomorfo à soma direta de I com o cokernel de f.
- 3. Sejam G um grupo, k um corpo, e kG a álgebra de grupo sobre k, isto é, o k-espaço gerado por G com a multiplicação

$$\left(\sum_{\sigma} a_{\sigma}\sigma\right)\left(\sum_{\sigma} b_{\sigma}\sigma\right) = \sum_{\sigma,\tau} a_{\sigma}b_{\tau}\sigma\tau.$$

Se M e N são kG-módulos (à esquerda), podemos definir uma estrutura de kG-módulo no k-espaço vetorial $M \otimes_k N$ da seguinte forma: $\sigma(m \otimes n) = \sigma m \otimes \sigma n$, para todos $\sigma \in G$, $m \in M$ e $n \in N$. Temos assim definidos os funtores $_{-} \otimes_K N : mod \ kG \to mod \ kG$ e $M \otimes_{K -} : mod \ kG \to mod \ kG$.

Do mesmo modo, podemos definir uma ação de G no k-espaço $\operatorname{Hom}_k(M,N)$ da seguinte forma: dados $\sigma \in G$ e $f \in \operatorname{Hom}_k(M,N)$, define-se $(\sigma \cdot f)$ por $(\sigma \cdot f)(m) = \sigma(f(\sigma^{-1}m))$ para todo $m \in M$. Sejam L, M, N kG-módulos.

(a) Dado $f \in \text{Hom}_{kG}(L, \text{Hom}_k(M, N))$, mostre que a aplicação

$$\alpha(f): L \otimes_k M \to N$$

$$l \otimes m \mapsto f(l)(m)$$

está bem definida e que é um morfismo de kG-módulos.

(b) Mostre que o morfismo

$$\alpha: \operatorname{Hom}_{kG}(L, \operatorname{Hom}_k(M, N)) \to \operatorname{Hom}_{kG}(L \otimes_k M, N)$$

dado por $f \mapsto \alpha(f)$ é um isomorfismo que é funtorial em L, M, N.

- 4. Seguindo o mesmo enunciado do exercicio 3,
 - (a) Seja L um kG-módulo projetivo. Utilizando o resultado do item (3b), mostre que $L \otimes_k M$ e $M \otimes_k L$ são kG-módulos projetivos para qualquer kG-módulo M.
 - (b) Usando o fato que uma álgebra A é semisimples se e somente se todo A-módulo é projetivo, mostre que são equivalentes:
 - i. kG é semisimples.
 - ii. O kG-módulo trivial k é projetivo (a estrutura de kG-módulo em k é $\sigma a = a$ para todo $\sigma \in G$, todo $a \in k$).
- 5. Seja A uma k-álgebra.
 - (a) Se M é um A-módulo à direita, mostre que $\operatorname{Hom}_A(A_A, M) \simeq M$ como A-módulos, e que o isomorfismo é funtorial em M.
 - (b) Seja

$$0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \tag{1}$$

uma sequência de A-módulos. Sabe-se que se esta sequência é exata então

$$0 \longrightarrow \operatorname{Hom}_{A}(X, L) \xrightarrow{f_{*}} \operatorname{Hom}_{A}(X, M) \xrightarrow{g_{*}} \operatorname{Hom}_{A}(X, N)$$
 (2)

é exata para cada A-módulo à direita X.

Prove a recíproca: se (2) é exata para todo X então (1) é exata.

- (c) Seja (F,G) par de funtores adjuntos, sendo $F: mod\ A \to mod\ k$ e $G: mod\ k \to mod\ A$. Use os itens anteriores para mostrar que G é exato à esquerda.
- 6. Prove o teorema de isomorfismo de Noether: se temos submódulos $N \subset M_2 \subset M_1$ então existe um diagrama comutativo de A-módulos e morfismos

$$0 \longrightarrow M_2 \longrightarrow M_1 \longrightarrow M_1/M_2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \theta$$

$$0 \longrightarrow M_2/N \longrightarrow M_1/N \longrightarrow \frac{M_1/N}{M_2/N} \longrightarrow 0$$

em que θ é um isomorfismo.