UNIVERSIDADE FEDERAL DO PARANÁ Programa de Pós-Graduação em Matemática EXAME DE QUALIFICAÇÃO EM ÁLGEBRA 4/08/2017

Salvo menção em contrário, nesta prova k denotará um anel comutativo, A denotará uma k-álgebra e "A-módulo" significa A-módulo à direita; $M=M_A$ indica que M é A-módulo à direita, $M={}_AM$ indica que M é A-módulo à esquerda e $M={}_AM_B$ indica que M é (A,B)-bimódulo.

Questões

1. Seja M um A-módulo e sejam $N_1 \subset N_2 \subset M$ submódulos. Use o lema da serpente para mostrar que

 $\frac{M/N_1}{N_2/N_1} \simeq \frac{M}{N_2}$

- 2. Nesta questão você provará que não existem módulos injetivos na categoria mod \mathbb{Z} dos \mathbb{Z} módulos finitamente gerados, ou seja, dos grupos abelianos finitamente gerados. Para isso, faça os itens a seguir.
 - (a) Mostre que Z não é um Z-módulo injetivo
 - (b) Mostre que $\mathbb{Z}p^r$ não é um \mathbb{Z} -módulo injetivo, sendo p um primo e r um inteiro positivo.
 - (c) O teorema fundamental dos grupos abelianos finitamente gerados diz que todo \mathbb{Z} -módulo finitamente gerado é da forma

$$M \simeq \mathbb{Z}^n \times \mathbb{Z}_{p_1^{r_1}} \times \mathbb{Z}_{p_2^{r_2}} \times \cdots \times \mathbb{Z}_{p_k^{r_k}}$$

onde $n \geq 0$, $r_i \geq 0$ para todo i e p_1, p_2, \ldots, p_k são primos não necessariamente distintos. Usando este resultado e os itens anteriores, conclua que não existem módulos injetivos em mod \mathbb{Z} .

- 3. Sejam A uma álgebra e $B \subset A$ uma subálgebra de A. Considere os funtores de restrição de escalares $F: \operatorname{Mod} A \to \operatorname{Mod} B$ e o funtor de extensão de escalares $G = {}_{-} \otimes_{B} A : \operatorname{Mod} B \to \operatorname{Mod} A$. Mostre que
 - (a) G preserva módulo livre.
 - (b) G preserva módulo projetivo.
 - (c) O par (G, F) é um par adjunto de funtores.
- 4. Sejam A e B duas álgebras Morita equivalentes, e seja $F: \operatorname{Mod} A \to \operatorname{Mod} B$ uma equivalência linear entre as categorias de módulos com quase-inversa $G: \operatorname{Mod} B \to \operatorname{Mod} A$.
 - (a) É verdade que se A é comutativa então B também é comutativa?
 - (b) Mostre que se $P \in \text{Mod } A$ é projetivo então $F(P) \in \text{Mod } B$ é projetivo.
 - (c) Mostre que se A é semissimples se e somente se B é semissimples.