Programa de Pós-graduação em Matemática Aplicada Exame de Qualificação em Álgebra Linear Aplicada 05/07/2013

1. Considere a matriz A tal que as matrizes V, Σ e U definidas por

$$V = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & -\sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, \Sigma = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 e
$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sqrt{2}/2 & -\sqrt{2}/2 \\ 0 & \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$

sejam a decomposição SVD de A, $A = V \Sigma U^T$.

- (a) Encontre a solução de norma-2 mínima x^* do problema de quadrados mínimos associado ao sistema linear Ax = b, com $b = [1, -1, 2, 1]^T$.
- (b) Explicite a forma geral dos vetores que minimizam $||Ax b||_2^2$.
- 2. Dados $u, v \in \mathbb{R}^n$ com $u^T v \neq 0$, obtenha todos os autovalores e autovetores da matriz $A = (I + uv^T)(I uv^T)$.
- 3. Seja $A \in M_{n \times n}(\mathbb{R})$ uma matriz não singular e sejam $u, v \in \mathbb{R}^m$. Mostre que $A + uv^T$ é não singular se, e somente se, $v^T A^{-1} u \neq -1$.
- 4. Seja $A \in M_{m \times n}(\mathbb{R})$, $b \in \mathbb{R}^m$ com m > n. Dado $\lambda > 0$, considere o vetor x_{λ} solução do problema

$$\min_{x \in \mathbb{R}^n} \left\| \left(\begin{array}{c} A \\ \sqrt{\lambda} I \end{array} \right) x - \left(\begin{array}{c} b \\ 0 \end{array} \right) \right\|_2^2,$$

denominado solução de quadrados mínimos regularizada do sistema Ax = b. No problema acima, I e 0 denotam a matriz identidade de ordem n e o vetor nulo do \mathbb{R}^n , respectivamente.

- (a) Deduza as equações normais para o problema de quadrados mínimos acima.
- (b) Mostre que x_{λ} é única para cada $\lambda > 0$.
- (c) Encontre a solução x_{λ} em termos da descomposição SVD da matriz A.
- 5. Desenvolva detalhadamente um algoritmo para realizar a decomposição A = UL de uma matriz não singular $A \in M_{n \times n}(\mathbb{R})$, sendo $U \in M_{n \times n}(\mathbb{R})$ uma matriz triangular superior com $U_{i,i} = 1$ para $1 \le i \le n$, e $L \in M_{n \times n}(\mathbb{R})$ uma matriz triangular inferior. Suponha que não é necessário utilizar permutações. Como você utilizaria a fatoração UL para resolver o sistema linear Ax = b?