MINISTÉRIO DA EDUCAÇÃO
Universidade Federal do Paraná - UFPR
Departamento de Matemática
Programa de Pós-Graduação em Matemática

Exame de Qualificação: Álgebra Linear Avançada (Agosto 2012)

Banca Examinadora:

- Prof. Cristián Ortiz
- Prof. Edson Ribeiro Alvares
- Prof. Higidio Portillo Oquendo

Instruções:

- a) A prova tem uma duração de 3 horas;
- b) Cada questão escolhida vale 2,5 pontos. A prova tem um total de 10,0 pontos;
- d) Justifique todas as suas respostas.

Nome do aluno:

Questões

- (1) Mostre que a função traço é o único funcional linear $\Phi: M_{n\times n}(\mathbb{R}) \to \mathbb{R}$ tal que $\Phi(AB) = \Phi(BA)$, para quaisquer $A, B \in M_{n\times n}(\mathbb{R})$ e $\Phi(I) = n$.
- (2) Seja S um operador linear sobre um espaço vetorial V.
 - a) Mostre que

$$\{0\} \subseteq ker \ S \subseteq ker S^2 \subseteq \cdots$$

е

$$\cdots \subseteq Im \ S^3 \subseteq Im \ S^2 \subseteq Im \ S \subseteq V.$$

- b) Mostre que se $ker\ S^n=ker\ S^{n+1}$ então $ker\ S^n=ker\ S^{n+k}$ para qualquer inteiro positivo k. Prove um resultado análogo para a ImS^n .
- c) Mostre que se V tem dimensão finita, existe um menor inteiro positivo n tal que $ker\ S^n = ker\ S^{n+1}$. Nestas circunstâncias, verifique que $ker\ S^k \nsubseteq kerS^{k+1}$ para todo k < n. Prove um resultado análogo para $Im\ S^n$.
- (3) Descreva as possíveis formas canônicas de Jordan para matrizes 6×6 sobre \mathbb{C} que têm polinômio característico $(x-1)^2(x-4)^4$.
- (4) Seja n um inteiro positivo e E o \mathbb{R} -espaço vetorial dos polinômios com coeficientes reais, nulo ou de grau inferior ou igual à n. Seja A um polinômio com coeficientes reais, unitário e de grau n+1. Seja $f:E\to E$ a aplicação que a todo polinômio P de E associa o resto da divisão euclidiana de XP por A.
 - i) Mostre que a aplicação f é linear.
 - ii) Qual é a matriz de f na base $\{1, X, \dots, X^n\}$ de E.
 - iii) Calcule o polinômio característico de f.
 - iv) Seja λ um valor próprio de f. Mostre que λ é raiz de A e que o espaço próprio para o valor próprio λ é a reta gerada pelo polinômio $\frac{A}{X-\lambda}$.

- v) Mostre que o endomorfismo f é diagonalizavel, se e somente se, o polinômio A tem n+1 raizes reais e distintas.
- (5) Seja T um operador linear sobre um espaço de dimensão finita V. Prove que existe um vetor α em V com a propriedade: Se f é um polinômio e $f(T)\alpha = 0$, então f(T) = 0.