ÁLGEBRA LINEAR AVANÇADA Exame de Qualificação

Exercício 1: (1 pt)

Notemos $\mathcal{M}_2(\mathbb{R})$ o espaço de matrizes quadradas 2×2 .

- a) Dê um exemplo de uma matriz em $\mathcal{M}_2(\mathbb{R})$ que seja diagonalizável em \mathbb{C} más não diagonalizável em \mathbb{R} (justifique).
- b) Dê um exemplo de uma matriz em $\mathcal{M}_2(\mathbb{R})$ que não seja diagonalizável nem \mathbb{R} nem em \mathbb{C} (justifique).

Exercício 2: (2,5 pts)

Seja E um \mathbb{K} -espaço de dimensão finita, notemos $\mathcal{L}(E)$ o espaço dos endomorfismos de E. Considera $u, v \in \mathcal{L}(E)$ dois endormorfismos diagonalizáveis que comutam, ou seja tais que:

$$u \circ v = v \circ u$$
.

- a) Mostre que os autoespaços de v são estaveis por u.
- b) Mostre que u induz em cada autoespaço de v um endomorfismo diagonalizável.
- c) Deduza a existência de uma base \mathcal{B} em E que diagonaliza ambos u e v.

Exercício 3: (2,5 pts)

Sejam V um espaço vetorial sobre $\mathbb C$ de dimensão finita $n\geq 1$ e $T:V\to V$ um operador linear. A nulidade do operador T é a dimensão de seu núcleo.

- a) Mostre que se $m > k \ge 1$ então $\operatorname{nul}(T^m) \ge \operatorname{nul}(T^k)$.
- b) Seja $m \ge 1$. Mostre que se existe um vetor v tal que $T^{m-1}v \ne 0$ mas $T^mv = 0$ então o conjunto $\{v, T(v), \dots, T^{m-1}(v)\}$ é linearmente independente.
- c) Mostre que se $\operatorname{nul}(T^{n-1}) \neq \operatorname{nul}(T^n)$ então T é nilpotente, e $T^n = 0$.

Exercício 4: (2,5 pts)

Consideremos um espaço Euclidiano (V, \langle , \rangle) .

- a) Sejam $a_1, a_2, b_1, b_2 \in V$ e $|a_1| = |b_1|, |a_2| = |b_2|$. Suponhamos, que o ángulo entre a_1 e a_2 é igual ao ángulo entre b_1 e b_2 . Mostrar, que existe um operador ortogonal $\varphi \in \mathcal{L}(V)$ tal que $\varphi(a_i) = b_i, i = 1, 2$.
- b) Sejam $a_1, ..., a_k$ e $b_1, ..., b_k$ dois sistemas de vetores em V. Mostrar, que existe um operador ortogonal $\varphi \in \mathcal{L}(V)$, tal que $\varphi(a_i) = \varphi(b_i)$ se, e somente se $\langle a_i, a_j \rangle = \langle b_i, b_j \rangle$ para todo i, j.

Exercício 5: (1,5 pts)

Seja φ um operador autoadjounto em um espaço Hermitiano (V, \langle , \rangle) de dimensão n. Se os autovalores de φ são $\lambda_1 \leq ... \leq \lambda_n$. Mostrar, que:

a)
$$\lambda_1 \leq \frac{\langle \varphi(a), a \rangle}{\langle a, a \rangle} \leq \lambda_n$$
 para todos vetores $\vec{0} \neq a \in V$;

b)
$$\lambda_1 = \min_{|a|=1} \frac{\langle \varphi(a), a \rangle}{\langle a, a \rangle}, \quad \lambda_n = \max_{|a|=1} \frac{\langle \varphi(a), a \rangle}{\langle a, a \rangle}.$$