Programa de Pós-Graduação em Matemática

ÁLGEBRA LINEAR AVANÇADA Exame de Qualificação 9 de Dezembro de 2016

Exercício 1:

Sejam E um espaço vetorial de dimensão finita, $u \in \mathcal{L}(E)$ um endomorfismo linear, e $F \subset E$ um subespaço vetorial estável por u. Mostre que o polinômio minimal da restrição $u_F : F \to F$ divide o polinômio minimal de u

Correção do Exercício 1: São definições: $P \in \mathbb{K}[X]$ anula u implica que P anula u_F tambem (cláro) ou seja: temos inclusão dos ideais anuladores, o que implica que o minimal de u_F divide o minimal de u (pela definição do minimal).

Exercício 2:

Seja $a,b\in\mathbb{C}$ números complexos não nulos e:

$$E := \Big\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n \Big\}.$$

Mostre que E é um \mathbb{C} -espaço vetorial et determine a dimensão dele.

Correção do Exercício 2: Notemos $\Phi_{a,b}:\mathbb{C}^{\mathbb{N}}\to\mathbb{C}^{\mathbb{N}}$ a aplicação definida por

$$\Phi_{a,b}: u=(u_n)_{n\in\mathbb{N}} \longmapsto (u_{n+2}-au_{n+1}-bu_n)_{n\in\mathbb{N}}.$$

Então $\Phi_{a,b}$ é linear e $E = \ker(\phi_{a,b})$ logo é um subespaço vetorial. Para ver que E tem dimensão 2, mostra-se que a aplicação $\psi : E \to \mathbb{C}^2$ dada por $(u_n)_{n \in \mathbb{N}} \mapsto (u_0, u_1)$ é linear, sobrejetora e satisfaz $\ker(\psi) = \{0\}$ (logo injetora) *i.e.* ψ defina um isomorfismo.

Exercício 3:

Seja (E, \langle , \rangle) um espaço Euclidiano. Diz-se que uma aplicação linear $u \in \mathcal{L}(E)$ preserva a ortogonalidade sse a seguinte propriedade esta satisfeita:

$$\langle x, y \rangle = 0 \Rightarrow \langle u(x), u(y) \rangle = 0, \quad (\forall x, y \in E).$$
 (1)

O objetivo deste exercício é de mostrar que os endomorfismos que preservam a ortogonalidade são as compostas de um endomorfismo ortogonal com uma homotetia vetorial, ou seja: são os elementos s $u \in \mathcal{L}(E)$ tais que

$$\exists \lambda \in \mathbb{R}, \ \exists v \in \mathcal{O}(E), \quad u = \lambda v$$
 (2)

- a) Mostre que (2) implica (1)
- b) Seja $u \in \mathcal{L}(E)$ que preserva a ortogonalidade. Mostre que se $x, y \in E$ são tais que ||x|| = ||y|| e $\langle x, y \rangle = 0$, então ||f(x)|| = ||f(y)||.

c) Deduza que (1) implica (2).

Correção do Exercício 3:

- a) Cláro
- b) Segue da conta:

$$||x|| = ||y|| \Rightarrow ||x||^2 - ||y||^2 = 0,$$

$$\Rightarrow \langle x - y, x + y \rangle = 0,$$

$$\stackrel{(1)}{\Rightarrow} \langle f(x - y), f(x + y) \rangle = 0,$$

$$\Rightarrow \langle u(x) - u(y), u(x) + u(y) \rangle = 0,$$

$$\Rightarrow ||u(x)||^2 - ||u(y)||^2 = 0,$$

$$\Rightarrow ||u(x)|| = ||u(y)||.$$

Seja $u \in \mathcal{L}(E)$ que preserva a ortogonalidade. Mostre que para quaisquer $x, y \in E$ tais que ||x|| = ||y|| e $\langle x, y \rangle = 0$ temos ||f(x)|| = ||f(y)||.

c) Seja $\{e_1, \ldots, e_n\}$ uma base ortonormal de E. Então $||u(e_1)|| = \cdots = ||u(e_n)||$ pela questão b), notemos $\lambda \in \mathbb{R}$ este valor.

Caso $\lambda = 0$, é fácil ver que u = 0 logo pode-se escolher qualquer $g \in \mathcal{O}(E)$ em (2).

Caso $\lambda \neq 0$, defina $v := \frac{1}{\lambda}u$. Então $\{v(e_1), \dots, v(e_n)\}$ é uma base ortogonal por construção (verifique!) logo v envia uma base ortogonal numa base ortogonal, *i.e.* $v \in \mathcal{O}(E)$.

Exercício 4:

Seja E um \mathbb{C} -espaço vetorial de dimensão finita, $u \in \mathcal{L}(E)$, e $P \in \mathbb{K}[X]$.

- a) Mostre que se $\lambda \in \mathbb{C}$ é autovalor de u então $P(\lambda)$ é autovalor de P(u).
- b) Reciprocamente, mostre que se $\mu \in \mathbb{C}$ é autovalor de P(u) então existe um autovalor $\lambda \in \mathbb{C}$ de u tal que $P(\lambda) = \mu$. (Dica: pode-se decompor o polinômio $P(X) \mu$ em fatores simples...)
- c) Notemos $\lambda_1, \ldots \lambda_r \in \mathbb{C}$ os autovalores de u, e $Q(X) = \prod_{i=1}^r (X \lambda_i)$. Mostre que Q(u) é nilpotente.

Correção do Exercício 4:

- a) É facil mostrar que se $x \in E$ é autovetor de u associado ao autovalor λ , então x é autovetor de P(u) associado ao autovalor $P(\lambda)$, logo $P(\operatorname{Sp}_{\mathbb{C}}(u)) \subset \operatorname{Sp}_{\mathbb{C}}(P(u))$.
- b) Para mostrar a inclusão inversa, sendo que \mathbb{C} é algebricamente fechado, para qualquer $\mu \in \mathbb{C}$ pode-se decompor o polinômio $P(X) \mu$ num produto de fatores simples:

$$P(X) - \mu = a \cdot \prod_{i=1}^{n} (X - \alpha_i)$$

onde $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ são as raizes de $P(X) - \mu$, e $a \neq 0$ seu coeficiente de maior grau. Segue imediatamente que:

$$\det(P(u) - \mu \mathrm{id}_E) = a^n . \prod_{i=1}^n \det(u - \alpha_i \mathrm{id}_E)$$

Logo se μ é autovalor de P(u), i.e. se $\det(P(u) - \mu \mathrm{id}_E) = 0$, então existe $i_0 \in \{1, \dots n\}$ tal que $\det(u - \alpha_{i_0} \mathrm{id}_E) = 0$, logo $\lambda := \alpha_{i_0}$ é autovalor de u e $P(\lambda) - \mu = 0$.

c) Temos $Q(\lambda_i)=0$ logo, pela questão precedente, Q(u) tem spectro $\{0_{\mathbb{C}}\}$, isso é Q(u) tem polinômio minimal $-X^n$, logo é nilpotente.

Exercício 5: