MINISTÉRIO DA EDUCAÇÃO
Universidade Federal do Paraná - UFPR
Departamento de Matemática
Programa de Pós-Graduação em Matemática

Exame de Qualificação: Álgebra Linear Avançada (Dezembro de 2017)

Banca Examinadora:

- Prof. Edson Ribeiro Alvares
- Prof. Olivier Brahic
- Prof. Marcelo Muniz Silva Alves

Instruções:

- a) A prova tem uma duração de 3 horas;
- b) Cada questão escolhida vale 2,0 pontos. A prova tem um total de 10,0 pontos;
- d) Justifique todas as suas respostas.

Nome do aluno:

Questões

- (1) Calcule o polinômio minimal da matriz $n \times n$ $\begin{pmatrix}
 1 & 1 & 1 & \dots & 1 \\
 1 & 1 & 1 & \dots & 1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 1 & 1 & 1 & \dots & 1 \\
 1 & 1 & 1 & \dots & 1
 \end{pmatrix}$ para $n \ge 2$.
- (2) Seja E um \mathbb{R} -espaço vetorial de dimensão finita e $0 \neq f \in \mathcal{L}(E)$ e J_f o conjunto dos operadores lineares de E que se escrevem na forma $u \circ f$, onde $u \in \mathcal{L}(E)$.
 - (a) Verifique que J_f é um subespaço vetorial de $\mathcal{L}(E)$.
 - (b) Mostre que $g \in J_f$ se e somente se $Ker f \subset Ker g$.
- (3) Seja E um \mathbb{R} -espaço vetorial e $u \in \mathcal{L}(E)$ sem autovalores reais. Se $F \subseteq E$ é um subespaço u-invariante, mostre que $\dim F$ é par.
- (4) Se $u \in \mathcal{L}(E)$ é um operador linear tal que $u^3 2u^2 + u = 0$, quais são as possíveis formas de Jordan de u.
- (5) Seja E um espaço com produto interno real de dimensão finita. Consideremos $u \in \mathcal{L}(E)$ um endomorfismo invertível e antisimétrico:

$$\langle u(x), y \rangle = -\langle x, u(y) \rangle.$$

- (a) Mostre que para qualquer $x \in E$, os vetores x e u(x) são ortogonais.
- (b) Mostre que $s := u \circ u$ é um operador simétrico (auto-adjunto).
- (c) Seja λ um autovalor de s. Mostre que $\lambda<0.$

Denotemos por E_{λ} o autoespaço (do operador s) associado a λ , fixemos $x \in E_{\lambda} - \{0\}$ e denotemos por F o subespaço de E gerado por x e u(x):

$$F := \operatorname{Vec}(x, u(x)).$$

(d) Mostre que F é estável por u, e encontre uma base B_F ortonormal de F tal que a matriz da restrição $u_F: F \to F$ seja dada por:

$$(u_F)_{B_F} = \left[\begin{array}{cc} 0 & -\mu \\ \mu & 0 \end{array} \right].$$

Determine o valor de μ .

(e) Mostre que existe uma base ortonormal B de E tal que a matriz de u seja da seguinte forma:

$$(u)_B = \begin{bmatrix} 0 & -\mu_1 \\ \mu_1 & 0 \\ & & \ddots \\ & & 0 & -\mu_r \\ & & \mu_r & 0 \end{bmatrix}.$$