Universidade Federal do Paraná Departamento de Matemática Programa de Pós-Graduação em Matemática

Exame de qualificação de Álgebra Linear Avançada

- Aluno:
- <u>Data:</u> 30/08/2018.
- Banca examinadora:
 - 1. Prof. Olivier Brahic
 - 2. Prof. Marcelo Muniz Silva Alves
 - 3. Prof. Matheus Batagini Brito
- Instruções:
 - 1. A prova tem uma duração de 3 horas;
 - 2. Justifique todas as suas respostas;
 - 3. Entregue a(s) folha(s) de questões junto com as soluções.
 - 4. A menos que seja dito o contrário, $\mathbb K$ denota um corpo de característica 0 e V um $\mathbb K$ -espaço vetorial.

Questões:

1. (2 pontos) Seja $T: \mathbb{R}^4 \to \mathbb{R}^4$ definido por

$$T(x, y, z, w) = (x + y - 2z, 2x + y + 2w, x + z + w, -y + 2z + w).$$

Sabendo que o polinômio característico de T é $(x-1)^4$ encontre a forma de Jordan de T e uma base de Jordan.

- 2. (2 pontos) Suponha dimV=7 e que T é um operador linear de V tal que seu polinômio minimal é $m_T(x)=(x-1)^2(x+2)^3$.
 - (a) Descreva as possíveis formas de Jordan de T.
 - (b) Se adicionarmos a hipótese que dim Im(T+2I)=4 qual é a forma de Jordan de T? Justifique.
- 3. (2 pontos) Suponha que $\dim V = n$, finita e T é um operador linear diagonalizável em V.
 - (a) Se T tem um vetor cíclico mostre que T tem n autovalores distintos.
 - (b) Se T tem n autovalores distintos e se $\{v_1, \ldots, v_n\}$ é uma base de autovetores de T mostre que $v_1 + \cdots + v_n$ é T-cíclico.
- 4. (2 pontos) Sejam $q = 2(xy + xz + yz) (x^2 + y^2 + z^2)$ uma forma quadrática em \mathbb{R}^3 e ϕ a forma bilinear simétrica tal que $\phi(v,v) = q(v)$. Considere também o operador linear T em \mathbb{R}^3 tal que $\langle T(e_i), e_j \rangle = \phi(e_i, e_j)$ para quaisquer $1 \leq i, j \leq 3$, sendo $\{e_1, e_2, e_3\}$ a base canônica e $\langle \cdot, \cdot \rangle$ o produto interno usual de \mathbb{R}^3 .
 - (a) Encontre base β de \mathbb{R}^3 com respeito a qual as representações matriciais $[T]^{\beta}_{\beta}$ de T e $[\phi]_{\beta}$ de ϕ sejam diagonais.
 - (b) Calcule a assinatura de ϕ .
 - (c) Dê exemplo de uma base γ de \mathbb{R}^3 tal que $[\phi]_{\gamma}$ é diagonal, mas $[T]_{\gamma}^{\gamma}$ não é diagonal.

- 5. (2 pontos) Sejam V e W \mathbb{K} espaços vetoriais.
 - (a) Mostre que existe única transformação linear $\Gamma: V \otimes W \to \mathcal{L}(V^*, W)$ satisfazendo $\Gamma(v \otimes w)(f) = f(v)w, \qquad \text{para quaisquer } v \in V, w \in W, f \in V^*.$
 - (b) Mostre que se as dimensões de V e W forem finitas então Γ é um isomorfismo.