UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA

Programa de Pós-Graduação em Matemática e Matemática Aplicada Exame de Qualificação em Análise Numérica e da disciplina EMA708 15/12/2014

|--|

Instruções:

- 1. A prova deve ser entregue até .
- 2. Não é permitido o uso de calculadoras e telefones celulares.
- 3. Justifique rigorosamente cada resposta.
- 4. Escolha e marque nesta folha 4 questões para a avaliação de EMA708

Questões:

1. Dado o sistema linear Ax = b e uma norma matricial $\|\cdot\|$ induzida por uma norma vetorial $\|\cdot\|$, mostre que o erro relativo da solução do sistema perturbado

$$A(\boldsymbol{x} + \delta \boldsymbol{x}) = \boldsymbol{b} + \delta \boldsymbol{b}$$

é limitado pelo erro relativo do dado inicial vezes o número de condição da matriz A na norma $\|\cdot\|$.

2. Sejam $x_0 = -1$, $x_1 = 1$ e $f \in C^2([-1, 1])$, e seja $\Pi_1 f$ o polinômio interpolador de f nos pontos x_0 e x_1 . Mostre que existe $\xi \in [-1, 1]$ tal que

$$f(x) - \Pi_1 f(x) = \frac{f''(\xi)}{2!} \omega_2(x), \quad \omega_2(x) = (x+1)(x-1).$$

- 3. Sejam $\tilde{I}_0(f) = w_0 f(x_0) \in \tilde{I}(f) = \int_0^1 f(x) x^2 dx$.
 - (a) Se $x_0 = 1/2$, encontre w_0 tal que $\tilde{I}_0(1) = \tilde{I}(1)$.
 - (b) Encontre x_0 and w_0 tais que $\tilde{I}_0(p) = \tilde{I}(p)$ para todo polinômio p de grau 1.
- 4. Seja $(V, (\cdot, \cdot))$ um espaço de Hilbert tal que $\mathcal{P}_n \subset V$ para todo $n \geq 0$, sendo \mathcal{P}_n o espaço dos polinômios de grau $\leq n$. Sejam $p_0, \ldots, p_n \in \mathcal{P}_n$ polinômios ortogonais com respeito ao produto interno (\cdot, \cdot) tais que $||p_k|| := (p_k, p_k)^{1/2} = 1$, $0 \leq k \leq n$. Dado $f \in V$, encontre $p_n^* \in \mathcal{P}_n$ tal que

$$||p_n^* - f|| = \min_{p \in \mathcal{P}_n} ||p - f||.$$

- 5. Seja P uma matriz simétrica e positiva definida, e A uma matriz positiva definida (mas não simétrica). Mostre que $P^{-1}A$ é positiva definida.
- 6. Seja A simétrica e positiva definida com autovalores $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n > 0$, e P = diag(A). Considere o método iterativo

$$P\boldsymbol{x}^{(k+1)} = (P - \omega A)\boldsymbol{x}^{(k)} + \omega b \tag{1}$$

- (a) Mostre que o método iterativo (1) é consistente para todo $\omega \in \mathbb{R}$;
- (b) Determine para quais valores de ω o método iterativo (1) é convergente.