UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA

Programa de Pós-Graduação em Matemática Exame de Qualificação em Análise Numérica I - EMA708 08/12/2017

NOME:

Instruções:

- 1. Não é permitido o uso de calculadoras e telefones celulares.
- 2. Justifique rigorosamente cada resposta.

Questões:

1. (2 pts) Considere o sistema linear Ax = b, onde $b \in \mathbb{R}^n$ e $A \in \mathbb{R}^{n \times n}$ é não singular. Seja \hat{b} uma perturbação de b e \hat{x} a sua correspondente solução perturbada. Mostre que:

$$\frac{1}{K(A)} \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|} \le K(A) \frac{\|r\|}{\|b\|},$$

onde r é o vetor residual, e o erro e K(A) o numero de condicionamento da matriz A.

- 2. (2 pts) Considere uma função $f:[a,b]\to\mathbb{R}$.
 - (a) (1 pto) Calcule a fórmula de integração numérica de f nos pontos $x_0 = a, x_1 = \frac{a+b}{2}$ e $x_2 = b$ (Regra de Simpson).
 - (b) (1 pto) Mostre que a regra é exata para polinômios de grau ≤ 3 .
- 3. Sejam $A \in \mathbb{R}^{n \times n}$ e $b \in \mathbb{R}^n$, considere o splitting A = P N onde P é não singular. Para o solução do sistema linear Ax = b, considere a família de métodos iterativos da forma: dado $x^{(0)} \in \mathbb{R}^n$

$$x^{(k+1)} = Bx^{(k)} + f, \quad k \ge 0,$$

onde $B = P^{-1}N$ e $f = P^{-1}b$.

- (a) (1 pto) Deduza o método JOR e mostre que é consistente para todo $w \neq 0.$
- (b) (1 pto) Deduza o método SOR e mostre que é consistente para todo $w \neq 0.$
- 4. Para a solução do sistema linear Ax = b, onde

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 5 \end{pmatrix},$$

considere o seguinte método iterativo: dado $x^{(0)} \in \mathbb{R}^2$ e $\theta \in \mathbb{R}$, então

$$x^{(k+1)} = B(\theta)x^{(k)} + g(\theta), \quad k \ge 0,$$

sendo

$$B(\theta) = \frac{1}{4} \begin{pmatrix} 2\theta^2 + 2\theta + 1 & -2\theta^2 + 2\theta + 1 \\ -2\theta^2 + 2\theta + 1 & 2\theta^2 + 2\theta + 1 \end{pmatrix}, \quad g(\theta) = \begin{pmatrix} \frac{1}{2} - \theta \\ \frac{1}{2} - \theta \end{pmatrix}.$$

- (a) (1 pto) Determine os valores de θ para os quais o método é convergente.
- (b) (1 pto) Determine o valor ótimo de θ .
- 5. (2 pts) Considere o sistema Ax + b = 0, onde $A \in \mathbb{R}^{n \times n}$ é simétrica e definida positiva e $b \in \mathbb{R}^n$. Mostre que os vetores residuais $r^{(k)}$, em que $k = 1, 2, \dots, n$ para um método de direção conjugada, satisfaz as equações

$$(r^{(k)}, p^{(j)}) = 0,$$

para cada $j = 1, 2, \dots, k$.

Dica: Os passos do método são dados por $x^{(k)} = x^{(k-1)} + t_k p^{(k)}$ onde $t_k = -\frac{(r^{(k-1)}, p^{(k)})}{(Ap^{(k)}, p^{(k)})}$.