Universidade Federal do Paraná Departamento de Matemática Programa de Pós-Graduação em Matemática

Exame de qualificação de Análise em \mathbb{R}^n

- <u>Data:</u> 03/08/18
- Banca examinadora:
 - 1. Cleber de Medeira
 - 2. Fernando de Ávila
 - 3. Pedro Damázio
- Instruções:
 - 1. A prova tem duração de 3 horas;
 - 2. Justifique todas as suas respostas;

Questões:

- 1. (20 pontos) Mostre que $\mathbb{S} = \{x \in \mathbb{R}^2; |x| = 1\}$ não é homeomorfo a nenhum subconjunto de \mathbb{R} .
- 2. (10 pontos) Enuncie os teoremas da função inversa e da função implícita;
- 3. (10 pontos) Seja $a\in U$ um ponto crítico de uma função $f:U\to\mathbb{R}$, de classe C^2 no aberto $U\subset\mathbb{R}^n$. Supondo que a matriz hessiana

$$H_f(a) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(a) \right]$$

é invertível, mostre que existe um aberto V, com $a \in V \subset U$, no qual não há outros pontos críticos de f. (Dica: note que existe uma relação entre $H_f(x)$ e a função

$$F(x) = \nabla f(x), \ x \in U.$$

4. (10 pontos) Considere uma família de funções

$$g_{\lambda}: \mathbb{R} \to \mathbb{R}$$
, a um parâmetro real λ ,

de modo que $g_{\lambda}(x) = g(\lambda, x)$ seja de classe C^1 em \mathbb{R}^2 . Suponha também que g_{λ_0} possua um ponto fixo x_0 . Obtenha condições que garantam a exitência e unicidade de ponto fixo, próximo de x_0 , para toda g_{λ} , com λ próximo de λ_0 .

- 5. (20 pontos) Como aplicação do método do Multiplicador de Lagrange, verifique que todo operador simétrico em \mathbb{R}^n possui autovetores. (Dica: considere $A = [a_{ij}]$ uma matriz simétrica de ordem n e a função $f: \mathbb{R}^n \to \mathbb{R}$, definida por $f(x) = \langle A \cdot x, x \rangle$.)
- 6. (10 pontos) Considere $A \subset \mathbb{R}^n$ um retângulo e $f:A \to \mathbb{R}$ uma função integrável. Suponha que o conjunto

$$X = \{x \in A; \ f(x) \neq 0\}$$

tenha medida nula. Prove que

$$\int_{A} f(x)dx = 0.$$

7. (10 pontos) Sejam $\varphi:[a,b]\to\mathbb{R}$ e $\psi:[c,d]\to\mathbb{R}$ duas funções integráveis. Mostre que a função $f(x,y)=\varphi(x)\psi(y)$ é integrável em $A=[a,b]\times[c,d]$ e vale

$$\int_A f(x,y) dx dy = \left(\int_a^b \varphi(x) dx \right) \left(\int_c^d \psi(y) dy \right).$$

8. (10 pontos) Sejam $h:U\to V$ um difeomorfismo de classe C^1 entre os abertos $U,V\subset\mathbb{R}^n$, $X\subset U$ um conjunto J-mensurável e $f:h(X)\to\mathbb{R}$ uma função. Mostre que h(X) é um conjunto J-mensurável e, além disso, se f é integrável, então a composta $f\circ h:X\to\mathbb{R}$ é integrável.

Boa prova!