Universidade Federal do Paraná Departamento de Matemática Programa de Pós-Graduação em Matemática

Exame de qualificação de Análise em \mathbb{R}^n

- <u>Data:</u> 01/03/2019
- Banca examinadora:
 - 1. Alexandre Kirilov
 - 2. Cleber de Medeira
 - 3. Fernando de Ávila
- Instruções:
 - 1. A prova tem duração de 3 horas;
 - 2. Justifique todas as suas respostas;

Questões:

1. (30 pontos) Dados $X \subset \mathbb{R}^n$ não vazio a $a \in \mathbb{R}^n$, defina a distância entre $a \in X$ por

$$dist(a, X) = \inf\{\|a - x\|, x \in X\}$$

- (a) Mostre que $\overline{X} = \{a \in \mathbb{R}^n; \ d(a, X) = 0\};$
- (b) Prove que a função $x \in \mathbb{R}^n \mapsto d(x, X) \in [0, \infty)$ é uniformemente contínua.
- (c) Sejam $A, B \subset \mathbb{R}^n$ conjuntos fechados e disjuntos. Mostre que $f: \mathbb{R}^n \to \mathbb{R}$ definida por

$$f(x) = \frac{\operatorname{dist}(x, A)}{\operatorname{dist}(x, A) + \operatorname{dist}(x, B)}$$

é uma função contínua com imagem $f(\mathbb{R}^n)=[0,1]$. Além disso, verifique que $A=f^{-1}(\{0\})$ e $B=f^{-1}(\{1\})$.

- 2. (20 pontos) Seja $\mathbb{M}_3(\mathbb{R})$ o espaços das matrizes 3×3 com entradas reais e $A_0 \in \mathbb{M}_3(\mathbb{R})$. Mostre que a função determinante det : $\mathbb{M}_3(\mathbb{R}) \to \mathbb{R}$ é diferenciável e calcule (det)'_{A_0}(I).
- 3. (30 pontos) Uma função $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$, de classe C^1 no aberto A, é dita uma submersão em $x_0\in A$ se $f'(x_0)$ é sobrejetiva (nesse caso $n\geq m$).
 - (a) Se m = n e f é submersão em x_0 , mostre que é submersão numa vizinhança de x_0 .
 - (b) Suponha $f: A \subset \mathbb{R}^{n+p} \to \mathbb{R}^p$, de classe C^1 no aberto A com $f'(p_0)$ é sobrejetiva. Mostre que existe um aberto U contendo p_0 tal que f(U) é aberto de \mathbb{R}^n . Dicas:
 - escreva $f'(p_0) = (f'_x(p_0), f'_y(p_0)).$
 - considere F(x,y) = (x, f(x,y));
 - utlize o teorema da função i*****;
 - a projeção $\pi_2: \mathbb{R}^{n+p} \to \mathbb{R}^p$ ajuda a concluir que f(U) é aberto de \mathbb{R}^n .

- 4. (20 pontos) Seja $f:A\to\mathbb{R}$ uma função integrável no retângulo
 $A\subset\mathbb{R}^n.$
 - (a) Se o conjunto $X=\{x\in A: f(x)\neq 0\}$ tem medida nula, mostre que

$$\int_{A} f(x)dx = 0;$$

(b) Mostre que o conjunto $\Gamma = \{(x,f(x)) \in \mathbb{R}^{n+1}; x \in A\}$ tem medida nula.

Boa prova!