Prova de Qualificação de Geometria

Cada resposta deve ser acompanhada de uma justificativa adequada. É prohibido o uso de aparelhos eletrônicos, ou de notas de aulas.

Duração: 3h

Exercício 1:

Consideremos a aplicação $v: \mathbb{R}^3 \to \mathbb{R}^6$ dada por:

$$v(x, y, z) := (x^2, y^2, z^2, \sqrt{2}xy, \sqrt{2}yz, \sqrt{2}zx)$$

- a) Mostre que a imagem da esfera $\mathbb{S}^2 \subset \mathbb{R}^3$ por v é uma subvariade imersa de \mathbb{R}^6 , difeomorfa a $P_2(\mathbb{R})$.
- b) Mostre que $v(\mathbb{S}^2)$ é inclusa em $H \cap \mathbb{S}^5$, onde H é um hiperplano afim de \mathbb{R}^6 (a determinar).
- c) Deduza que existe um mergulho de $P_2(\mathbb{R})$ em \mathbb{R}^5 .
- d) Indique, sem entrar nos detalhes, como obter das questões precedentes um mergulho de $P_2(\mathbb{R})$ em \mathbb{R}^4 .

Observação: Pode-se mostrar que não existe mergulho de $P_2(\mathbb{R})$ em \mathbb{R}^3 .

Exercício 2:

Seja N uma variedade de dimensão n e $M \subset N$ uma subvariedade mergulhada de dimensão m. Na sequência, denotemos $\mathcal{I}_M := \{f : N \to \mathbb{R} \mid f(x) = 0, \ \forall x \in M\}$ o ideal $\mathcal{I}_M \subset C^\infty(N)$ de funções que se anulam em M.

a) Seja $f \in \mathcal{I}_M$. Mostre que para qualquer $x \in M$, existe uma vizinhança \mathcal{U} de x em N, um sistema de coordenadas $\phi : \mathcal{U} \to \mathbb{R}^n$, e funções suaves $f_1, \ldots, f_{n-m} : \phi(\mathcal{U}) \to \mathbb{R}$ tais que:

$$f \circ \phi^{-1} = \sum_{i=1}^{n-m} x_i f_i,$$

onde x_1, \ldots, x_n denotam as coordenadas usuais em \mathbb{R}^n .

- b) Deduza que para qualquer $x \in M$, f induz um elemento $\nu(f)_x$ no espaço dual $(T_xN/T_xM)^*$. Aqui, $T_xM \subset T_xN$ denotam os espaços tangentes a M e N em x, e T_xN/T_xM é o espaço vetorial quociente. (Lembremos que para qualquer subespaço vetorial $W \subset V$, existe um isomorfismo canônico $(V/W)^* \simeq W^\circ$, onde $W^\circ \subset V^*$ denota o anihilador de W).
- c) Mostre que para qualquer $x \in N$, a aplicação $\nu_x : \mathcal{I}_M \to (T_x N/T_x M)^*, f \mapsto \nu_x(f)$ é linear, sobrejetora. Será que vale se $M \subset N$ é subvariedade imersa ?

Exercício 3:

Considere uma família finita \mathcal{F} de 1-formas diferenciais, $\mathcal{F} = \{\omega_1, \dots, \omega_r\}$ numa variedade diferenciável M^n . Definimos o *núcleo* de \mathcal{F} como o conjunto

$$\operatorname{nuc}(\mathcal{F}) = \{ X \in TM / \omega_i(X) = 0 \text{ para todo } i = 1, \dots r \}.$$

- a) Denotemoes $N_x := N \cap T_x M$. Mostre que, se $\dim(N_x)$ é a mesma para todo $x \in M$, então N_x é uma distribução suave em M.
- b) Dé um exemplo de uma família \mathcal{F} onde dim (N_x) não seja constante.
- c) Mostre que, na hipótese do ítem (b), a distribução N_x é integrável se, e somente se, para todo par de campos vetoriais X, Y em nuc $(\mathcal{F}), d\omega_i(X, Y) = 0$ para todo $i = 1, \ldots, r$.
- d) Considere o caso particular $\mathcal{F} = \{\omega_1\}$, onde ω_1 é a 1-forma em \mathbb{R}^3

$$\omega_1 = \cos(x)\cos(y) dx - \sin(x)\sin(y)dy - dz.$$

Mostre que $nuc(\mathcal{F})$ é integrável, e determine a folheação que a integra.

e) Uma 1-forma α numa variedade M^{2n+1} é dita de contato se a (2n+1)-forma $\alpha \wedge d\alpha \wedge \cdots \wedge d\alpha$ é não nula quando avaliada em qualquer $x \in M$. Seja $\mathcal{F} = \{\alpha\}$ onde α é uma forma de contato. Mostre que nuc (\mathcal{F}) não é integrável.