Universidade Federal do Paraná Departamento de Matemática Programa de Pós-Graduação em Matemática

Exame de qualificação de Geometria

- Aluno:
- <u>Data:</u> 26/08/2020
- Banca examinadora:
 - 1. Professor Carlos Eduardo Durán Fernández
 - 2. Professor Olivier Brahic
 - 3. Professor Diego Mano Otero
- Instruções:
 - 1. A prova tem uma duração de 3 horas;
 - 2. Justifique todas as suas respostas;
 - 3. Entregue a(s) folha(s) de questões junto com as soluções.

Questões:

- 1. (2.5 pontos) Seja $f: M_n(\mathbb{R}) \to S_n(\mathbb{R})$ a função $f(X) = X^\top \cdot X$, onde $M_n(\mathbb{R})$ e $S_n(\mathbb{R})$ denotam o conjunto de todas as matrizes $n \times n$ reais e o conjunto das matrizes simétricas $n \times n$ reais.
 - a) Mostre que a matriz identidade $I \in S_n(\mathbb{R})$ é um valor regular de f, assim mostrando que o grupo ortogonal é uma subvariedade mergulhada no espaço vetorial $M_n(\mathbb{R})$.
 - b) Mostre que o tangente $T_IO(n)$ em $I \in O(n)$ pode ser identificado com o conjunto de matrizes antissimétricas $n \times n$.
 - c) Mostre que o tangente T_pS^{n-1} em $p \in S^{n-1} \subset \mathbb{R}^n$ pode ser identificado com o conjunto de vetores em \mathbb{R}^n perpendiculares a p.
 - d) Mostre que a função $g: O(n) \times S^{n-1} \to S^{n-1}$, dada por $g(X,p) = X \cdot p$ (multiplicação de matrizes, onde $p \in S^{n-1}$ é visto como uma matriz coluna), é diferenciável. Dé uma expressão algébrica para a derivada de g no ponto (I,e_1) , onde e_1 é o primeiro elemento da base padrão de \mathbb{R}^n .
- 2. (2.5 pontos) Considere a função $s: S^2 \to \mathbb{R}^3$ dada por s(x,y,z) = (xy,xz,yz). Mostre que s é uma imersão com exceção de um número finito de pontos. Quais? Mostre que s induz uma função diferenciável $\hat{s}: \mathbb{R}P^2 \to \mathbb{R}^3$, que é uma imersão com exceção de um número finito de pontos; quantos?
- 3. (2.5 pontos) Considere a função $h:S^3\to\mathbb{R}^3\cong\mathbb{R}\times\mathbb{C}$ dada por

$$h(z_1, z_2) = (|z_1|^2 - |z_2|^2, 2z_1\overline{z_2}),$$

onde consideramos S^3 como a esfera unitária em \mathbb{C}^2 . Mostre que:

- a) A imagem de h cai dentro da esfera $S^2 \subset \mathbb{R} \times \mathbb{C}$.
- b) Como função de $S^3 \to S^2$, h é diferenciável.

- c) Como função de $S^3 \to S^2$, h é uma submersão.
- 4. (2.5 pontos) Seja M uma variedade conexa por caminhos.
 - a) Suponha que $f: M \to \mathbb{R}$ satisfaz df = 0. Mostre que f é constante.
 - b) Considere a projeção $\pi: S^2 \to \mathbb{R}P^2$. Mostre que uma 1-forma β em S^2 satisfaz $\beta = \pi^* \rho$ para alguma 1-forma em $\mathbb{R}P^2$ se, e somente se $a^*\beta = \beta$, onde $a: S^2 \to S^2$ é a aplicação antipodal a(p) = -p.
 - c) Suponha que: toda 1-forma fechada em S^2 é exata, e o Teorema de Borsuk-Ulam: toda função contínua da esfera $f: S^n \to \mathbb{R}^n$ admite um ponto $p \in S^n$ tal que f(p) = f(-p). Mostre que toda 1-forma fechada em $\mathbb{R}P^2$ é exata.