Prova de Qualificação de Geometria

Cada resposta deve ser acompanhada de uma justificativa adequada. É prohibido o uso de aparelhos eletrônicos, ou de notas de aulas.

Duração: 3h

Exercício 1:

Na sequência, denotemos:

- $M_n(\mathbb{R})$ o espaço das matrizes reais $n \times n$,
- $GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ o grupo das matrizes invertíves,
- $O_n(\mathbb{R}) \subset GL_n(\mathbb{R})$ o subgrupo das matrizes ortogonais,
- $S_n(\mathbb{R}) \subset M_n(\mathbb{R})$ o subespaço das matrizes simétricas.

Consideremos também a aplicação $f: M_n(\mathbb{R}) \to S_n(\mathbb{R})$ dada por $f(A) := A^{\top} \cdot A$.

- a) Mostre que $GL_n(\mathbb{R})$ é uma subvariedade de $M_n(\mathbb{R})$, determine sua dimensão, e identifique seu espaço tangente $TGL_n(\mathbb{R})$.
- b) Mostre que a restrição de f a $GL_n(\mathbb{R})$ é uma aplicação de classe C^{∞} e determine sua diferencial em qualquer ponto $A \in GL_n(\mathbb{R})$.
- c) Mostre que $O_n(\mathbb{R})$ é uma subvariedade de $GL_n(\mathbb{R})$, determine sua dimensão, e identifique seu espaço tangente $TO_n(\mathbb{R})$ como subconjunto de $TGL_n(\mathbb{R})$.

Será que $O_n(\mathbb{R})$ é subvariedade imersa de $GL_n(\mathbb{R})$? É mergulhada? É fechada?

- d) Mostre que O(n) tem exatamente duas componentes conexas.
- e) Denotemos $SO_n(\mathbb{R})$ a componente conexa da identidade em $O_n(\mathbb{R})$. Mostre que S^n identifica-se com o quociente $SO_{n+1}(\mathbb{R})/SO_n(\mathbb{R})$.

Exercício 2:

- a) Seja M uma variedade compacta e α uma 1-forma fechada em M. Mostre que se $\oint_{\gamma} \alpha = 0$ para toda curva fechada γ em M, então α é exata, isto é, $\alpha = df$ para alguma função suave $f: M \to \mathbb{R}$
- b) Mostre que $H^1_{dR}(S^2) = 0$. (sugestão: pode asumir como verdadeira a seguinte afirmação: seja $\gamma: [0,1] \to M$ uma curva fechada, diferenciável por partes, dim M>1. Então existe $p \in M$ tal que $\gamma(t) \neq p$ para todo $t \in [0,1]$.
- c) Mostre que $H^1_{dR}(T^2) \neq 0$, assim mostrando que T^2 não é difeomorfo a S^2 $(T^2 = S^1 \times S^1)$.

Exercício 3: Mostre que todo campo vetorial tangente à esfera S^2 tem pelo menos um zero. Dar um exemplo de campo vetorial em S^2 com somente um zero. Dar exemplos de campos vetorias tangentes a T^2 sem zeros.

Exercício 4: Considere a distribuição D em \mathbb{R}^3 gerada pelos campos vetoriais:

$$\frac{\partial}{\partial x} + \cos x \cos y \frac{\partial}{\partial z}; \frac{\partial}{\partial y} - \sin x \sin y \frac{\partial}{\partial z}$$

Verifique que D é involutiva e determine a folheação F que a integra.