Exame de qualificação de Otimização I

- Aluno:
- Data: 03/08/2018
- Banca examinadora:
 - 1. Ademir Alves Ribeiro
 - 2. Alberto Ramos
 - 3. Elizabeth Wegner Karas
- Instruções:
 - 1. A prova tem duração de 3 horas;
 - 2. Justifique todas as suas respostas;
 - 3. Entregue a(s) folha(s) de questões junto com as soluções.

Questões:

1. (25 pontos) Considere o problema de minimização

minimizar
$$f(x)$$
 sujeito a $x \in \Omega$

onde $f: \mathbb{R}^n \to \mathbb{R}$ é uma função de classe \mathcal{C}^1 e $\Omega \subset \mathbb{R}^n$ é um conjunto convexo e fechado.

(a) Mostre que se x^* é um minimizador local deste problema, então

$$\nabla f(x^*)^T (x - x^*) \ge 0 \quad \text{para todo } x \in \Omega.$$
 (1)

- (b) Prove que se $x^* \in \Omega$ satisfaz a condição (1) e f é uma função convexa de classe \mathcal{C}^1 , então x^* é uma solução global do problema.
- 2. (25 pontos) Considere $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^1 . Suponha que existe L > 0 tal que, para todo $x, y \in \mathbb{R}^n$,

$$|f(y) - f(x) - \nabla f(x)^T (y - x)| \le \frac{L}{2} ||y - x||^2.$$

Dado $x^0 \in \mathbb{R}^n$, seja $(x^k) \subset \mathbb{R}^n$ a sequência definida por:

$$x^{k+1} = x^k - \frac{1}{L} \nabla f(x^k).$$

(a) Prove que, para todo $k \in \mathbb{N}$,

$$f(x^{k+1}) \le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|^2.$$

(b) Assumindo que f é limitada inferiormente, prove que $\|\nabla f(x^k)\| \to 0$.

- 3. (25 pontos) Mostre que o método de Newton não é afetado por mudança de variáveis, enquanto que o método de Cauchy sim. Mais precisamente, resolva os itens abaixo.
 - (a) Considere $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^2 , $P \in \mathbb{R}^{n \times n}$ uma matriz inversível e a mudança de variáveis x = Py. Defina a função $g: \mathbb{R}^n \to \mathbb{R}$ por g(y) = f(Py). Sejam $\bar{x}, \bar{y} \in \mathbb{R}^n$ tais que $\bar{x} = P\bar{y}$. Mostre que o ponto \bar{y}^+ , obtido por uma iteração do método de Newton com passo unitário para minimizar g, partindo de \bar{y} , satisfaz a relação $\bar{x}^+ = P\bar{y}^+$, onde \bar{x}^+ é o ponto obtido por uma iteração do método de Newton com passo unitário para minimizar f, partindo de \bar{x} .
 - (b) Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x) = x_1^2 + x_2^2$, o ponto $\tilde{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, a mudança de variáveis x = Py com $P = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ e a função $g: \mathbb{R}^2 \to \mathbb{R}$ dada por g(y) = f(Py). Pede-se:
 - o ponto $\tilde{y} \in \mathbb{R}^2$ que satisfaz a igualdade $\tilde{x} = P\tilde{y}$;
 - o ponto \tilde{x}^+ obtido com um passo do método de Cauchy com busca exata para minimizar f, partindo de \tilde{x} ;
 - o ponto \tilde{y}^+ obtido com um passo do método de Cauchy com busca exata para minimizar g, partindo de \tilde{y} .
 - Verifique que $\tilde{x}^+ \neq P\tilde{y}^+$.
- 4. (25 pontos) Considere os problemas (P_i) , com $i \in \{1, 2\}$, dados por

$$\begin{array}{ll}
\text{minimizar} & x_1\\
\text{sujeito a} & x \in \Omega_i
\end{array}$$

onde
$$\Omega_1 = \{x \in \mathbb{R}^2 \mid -x_1^3 + x_2 \le 0, -x_1^3 - x_2 \le 0, x_1 \le 1\}$$
 e $\Omega_2 = \{x \in \Omega_1 \mid -x_1 \le 0\}$. Pede-se:

- (a) Mostre que $\Omega_1 = \Omega_2$ e represente geometricamente o conjunto viável. Conclua que a origem é minimizador global de ambos os problemas.
- (b) Para qual desses dois problemas, a origem satisfaz as condições de KKT? Mencione e discuta as condições de qualificação associadas a cada problema.
- (c) O que você conclui dos itens anteriores?