Universidade Federal do Paraná Departamento de Matemática Programa de Pós-Graduação em Matemática

Exame de qualificação de Otimização

- Aluno:
- Data: 30/07/2019
- Banca examinadora:
 - 1. Ademir Alves Ribeiro
 - 2. Elizabeth Wegner Karas
 - 3. Alberto Ramos
- Instruções:
 - 1. A prova tem duração de 3 horas;
 - 2. Justifique todas as suas respostas;
 - 3. Entregue a(s) folha(s) de questões junto com as soluções.

Questões:

- 1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x) = \frac{1}{2}x_1^2 + e^{x_2}$.
 - (a) (5 pontos) Prove que f é convexa, limitada inferiormente e não possui pontos estacionários.
 - (b) (10 pontos) Considere $x = \begin{pmatrix} a \\ b \end{pmatrix}$, com $a \neq 0$, e $d = -\nabla f(x)$. Mostre que a função $\varphi : \mathbb{R} \to \mathbb{R}$ definida por $\varphi(t) = f(x+td)$ tem um único minimizador global t_* , o qual satisfaz $1 < t_* < 2 + a^{-2}$.
 - (c) (10 pontos) Considere a sequência $(x^k) = \begin{pmatrix} a_k \\ b_k \end{pmatrix}$, gerada pelo método de Cauchy com busca exata, a partir do ponto $x^0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Mostre que $|a_k| < \sqrt{2f(x^0)}$ para todo $k \in \mathbb{N}$ e que $b_k \to -\infty$.
- 2. Considere o problema

$$\begin{array}{ll}
\text{minimizar} & f(x) \\
\text{sujeito a} & x \in C,
\end{array} \tag{1}$$

onde $f:\mathbb{R}^n \to \mathbb{R}$ é uma função diferenciável e $C \subset \mathbb{R}^n$ um conjunto convexo e fechado.

(a) (13 pontos) Prove que se $x^* \in C$ é solução local do problema (1), então

$$\operatorname{proj}_{C}(x^{*} - \alpha \nabla f(x^{*})) = x^{*},$$

para todo $\alpha \geq 0$.

(b) (12 pontos) Suponha que f é convexa. Prove que se

$$\operatorname{proj}_{C}(x^{*} - \nabla f(x^{*})) = x^{*},$$

então x^* é solução global do problema (1).

- 3. (25 pontos) Seja $f: \mathbb{R}^n \to \mathbb{R}$ duas vezes diferenciável no ponto $x^* \in \mathbb{R}^n$. Mostre que se x^* é um ponto estacionário de $f \in \nabla^2 f(x^*)$ é definida positiva, então x^* é minimizador local estrito de f.
- 4. Considere o problema

minimizar
$$1 - x_1^2 x_2$$

sujeito a $x_1 + 2x_2 \le 2$
 $x_2 \ge x_1^3 - x_1$
 $x_1 \ge 0$. (2)

- (a) (5 pontos) Faça uma representação geométrica deste problema e mostre que o conjunto viável está contido na caixa $[0,2] \times [-2,1]$. Conclua que o problema tem um minimizador global.
- (b) (5 pontos) Prove que todo ponto viável cumpre LICQ.
- (c) (5 pontos) Mostre que se $(x, \mu) \in \mathbb{R}^2 \times \mathbb{R}^3$ cumpre as condições de KKT, então $\mu_3 = 0$.
- (d) (5 pontos) Sejam $x^* \in \mathbb{R}^2$ um minimizador global do problema (2) e $\mu^* \in \mathbb{R}^3$ o multiplicador correspondente. Mostre que x_1^* , μ_1^* e μ_2^* são todos não nulos.
- (e) (5 pontos) Mostre que o minimizador global é único.
- 5. Considere uma função $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 e suponha que existem constantes $M \ge m > 0$, tais que $\nabla^2 f(x) mI$ e $MI \nabla^2 f(x)$ são semidefinidas positivas para todo $x \in \mathbb{R}^n$.
 - (a) (5 pontos) Mostre que existem $b \in \mathbb{R}^n$ e $c \in \mathbb{R}$ satisfazendo

$$f(x) \ge \frac{m}{2} ||x||^2 + b^T x + c.$$

Conclua que f possui um minimizador global e que tal ponto é único.

(b) (5 pontos) Denotando por x^* o minimizador global de f, mostre que

$$f(x) - f(x^*) \ge \frac{m}{2} ||x - x^*||^2$$

para todo $x \in \mathbb{R}^n$.

(c) (7 pontos) Seja (x^k) uma sequência gerada pelo método de Newton com passo constante $t_k = \frac{m}{M}$. Prove que

$$f(x^{k+1}) \le f(x^k) - \frac{m}{2M} \nabla f(x^k)^T \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$$

para todo $k \in \mathbb{N}$.

(d) (8 pontos) Mostre que $x^k \to x^*$.