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RESUMO

Nesta dissertagao estudamos uma classe geral de métodos nao-monotonos sem derivadas
para solucao de sistemas de equacOes nao-lineares, incluindo o método N-DF-SANE
proposto em (IMA J. Numer. Anal. 29: 814-825, 2009). Esses métodos correspon-
dem a métodos de otimizacao sem derivadas aplicados a minimizacao de uma funcao
mérito conveniente. O comportamento nao-monétono é controlado por duas sequéncias
de parametros que definem os procedimentos de busca linear. Supondo que a fungao que
define as equagoes nao-lineares possui Jacobiana Lipschitz, mostramos que os métodos da
referida classe precisam de no méximo O (|log(e)|e~2) avaliagoes da fungao para gerarem
um ponto estacionario da fung¢ao mérito com precisao € > 0. A generalidade da nossa
analise permite mais liberdade para o desenvolvimento de novos métodos em termos das
escolhas para as sequéncias que controlam o comportamento nao-mondétono dos valores da
funcao mérito. Essa caracteristica é ilustrada por experimentos numéricos preliminares

incluindo novas variantes do método N-DF-SANE.

Palavras-chave: sistemas nao-lineares de grande porte, métodos nao-mondtonos, métodos

sem derivadas, complexidade de pior caso



ABSTRACT

In this dissertation we study a wide class of derivative-free nonmonotone methods for
solving nonlinear systems of equations, covering the method N-DF-SANE proposed in
(IMA J. Numer. Anal. 29: 814-825, 2009). These methods correspond to derivative-free
optimization methods applied to the minimization of a suitable merit function. The non-
monotonicity is controlled by two sequences of parameters that define the line-search pro-
cedure. Assuming that the mapping defining the nonlinear equations has Lipschitz contin-
uous Jacobian, we show that the methods in the referred class need at most O (| log(e)|e~2)
function evaluations to generate an e-approximate stationary point of the merit function.
The generality of our analysis allows more freedom for the design of new methods in terms
of the choices for the sequences that control the nonmonotone behavior of the merit func-
tion values. This feature is illustrated by preliminary numerical experiments including
new variants of the method N-DF-SANE.

Keywords: large scale nonlinear systems, nonmonotone methods, derivative-free meth-

ods, worst-case complexity
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Introduction

In this dissertation we study methods to solve nonlinear equations of the form
F(z) =0, (1)

where F': R — R" is a continuously differentiable mapping. Several problems in Engi-
neering, Statistics, Economy and Chemistry can be reduced to the solution of nonlinear
equations [4]. Moreover, nonlinear equations also arise in the numerical solution of certain
differential equations [7, [10, [15].

The main iterative scheme for solving is Newton’s method [14]. Tts advantage
is that it converges very fast starting from a good initial guess. However, when the
dimension n is very large, Newton’s method becomes very expensive since its execution
requires the computation and storage of the Jacobian matrix of F( - ), and also the solution
of a large-scale linear system at each iteration. Thus, in this work, we are interested in
derivative-free methods for solving , that is, methods that do not require the use of
the Jacobians of F'(-) neither the solution of linear systems. Specifically, we focus on
derivative-free nonmonotone spectral methods [2], [§].

The Spectral Approach for Nonlinear Equations (SANE) was introduced by La Cruz
and Raydan [9]. Subsequently, La Cruz, Martinez and Raydan [§] presented a derivative-
free version of SANE, which they called DF-SANE. The latter method uses a derivative-
free version of the nonmonotone line-search proposed by Grippo, Lampariello and Lucidi
[6]. Another derivative-free variant of SANE, called N-DF-SANE, was proposed by Cheng
and Li [2], in which they use a derivative-free version of the nonmonotone line-search
proposed by Zhang and Hager [I7]. Numerical experiments reported in [2] indicated
that N-DF-SANE was often better than DF-SANE in terms of the number of function
evaluations and the CPU time.

Motivated by these observations, in this dissertation we study a class of derivative-
free nonmonotone methods for solving that includes the N-DF-SANE method. More
specifically, we analyze the worst-case complexity of these methods. In the context of

derivative-based methodq[| worst-case complexity bounds of O (e72) or O (|log(e)|e?)

By derivative-based methods we mean methods that make explicit use of the Jacobian matrix of F(-)
or its product with some vector.
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have been obtained in [16], 18, 1], [I]. Under the assumption that the Jacobian of F(-)
is Lipschitz continuous, we show that the methods in the referred class need at most
O (] log(e€)]e~?) function evaluations to generate an e-approximate stationary point of the
merit function f(z) = (1/2)[|F(z)]]3.

In the methods analyzed, the nonmonotonicity is controlled by two sequences of pa-
rameters that define the line-search procedure. The generality of our analysis allows
more freedom for the design of new methods in terms of the choices for these sequences.
This feature is illustrated by preliminary numerical experiments including new variants
of the method N-DF-SANE applied to a subset of the Moré-Garbow-Hillstrom [12] test
problems.

This dissertation is organizated as follows. In Chapter 1, we analyze the worst-case
complexity of a general class of derivative-free non-monotone method. In Chapter 2, we
present a particular case that englobes N-DF-SANE method. In Chapter 3, we present

the numerical experiments.

11



Chapter 1

General Class of Nonmonotone

Algorithms

In what follows, we will consider the merit function f : R” — R defined by

fla) = I (1)

Our analysis will be carried out for the general algorithm described below.

Algorithm 1. (General Nonmonotone Method)

Step 0. Given a starting point zp € R™ and constants 5 € (0,1) and p > 0, choose a

sequence {0}, of positive numbers satisfying

“+00
Z% <6 < +oo, (1.2)
k=0
and set k := 0.
Step 1. Compute oy # 0 such that |og| € [Omin, Omaz), With 0 < Gmin < Omae < +00.
Step 2.1. Set ¢ := 0 and choose v > 0.
Step 2.2. If

¢ %
f(ﬂck—ﬂ UkF(xk)) < f(xk)+l/k+9k—P(5> f(zk), (1.3)
then, set £, = £, ay = B%, dp = —opF(x1) and go to Step 3. Otherwise, go to Step 2.3.
Step 2.3. If
¢ %
f($k+ﬁ U/cF(xk)) < f(ﬁk)+Vk+9k*p(5 > f(xk), (1.4)

then set ¢, = £, o, = B%, dj, = 0}, F(z3) and go to Step 3. Otherwise, set £ := £+ 1, and go
to Step 2.2.
Step 3. Set xpy11 = xp + apdy, k := k + 1 and go to Step 1.

12



Let us define the stationarity measure

min {IIF(f’C)“’ [E @]

0, otherwise.

} , whenever F(x) # 0,

U(z) = (1.5)

In Algorithm 1, we want to find z* such that ¢ (z*) = 0.

Remark 1.1. If F(z*) = 0 then, by we have ¥(xz*) = 0. However, the converse
is not necessarily true, since we may have (Vf(x*), F(z*)) = 0 with F(z*) # 0 and
Vf(z*) #0. For example, consider F(z) = F(z,y) = (sin*z,y — 1). We have

J(z) = ( 2sin(z) cos(z) 0 > '

0 1
11
At the point z* = 3—7T,§ , we have that F(z*) = (=, = |,
42 22
-1 0
J(2*) =
(%) ( 0 1)

and Vf(z*) = J(z*)TF(z*) = (—%, %) This implies that (V f(z*), F(2*)) = 0, hence
P(z*) =0 but F(2*) # 0 and Vf(z*) # 0.

Let us consider the following assumptions:

A1 The mapping F': R® — R" is continuously differentiable and its Jacobian J : R" —

R™™ is L ;-Lipschitz continuous.
A2 x?) v, < v < +oo.

A3 The level set L¢(zo) :={z € R" : f(z) < f(z0) + v + 0} is bounded as follows

sup{||z — zo|| : € L¢(z0)} = Dy < +00.

Remark 1.2. Under A3, if T € co(Ls(x0)) (i-e., if T belongs to the convex hull of L¢(x0))
then ||z — xo|| < Dy.

Remark 1.3. Combining , , and A2, if {xk}i\;o is well-defined, then

k-1 k-1
fax) < flxo) + Y v+ 6k < flzo) +v+9,
=0 =0

forallk € {1,...,N}. Thus, we have {xk}szo C L¢(zo) and so, under A3, ||zr—xo|| < Do
for all k > 0.

13



Lemma 1.1. Suppose that A1-A3 hold. Then, for function f(-) in we have

7) ~ F@) ~ (Vi@ y =) < Syl VeyeLiw),  (16)

where

L = (LyDo + |7 (o) 1)* + Ly [(LsDo + | (o)[1) Do + || F (o) 1] (1.7)

Proof. To obtain (1.6]), it is enough to show that V f(-) is L-Lipschitz continuous on
co (Ls(zg)). Given x,y € co (Lf(xy)),

IVf@) = Vil = [7@) Flz) - Jy)" Fo)l
< @) F(z) = J(@) F)ll + /()" Fy) = J(y)" F(y)]
< [J@IE @) = F@)l+ 1) = J@IEWI- (1.8)

From Al and Remark [I.2] we get

[J@)| < [|J(@) = J(@o)|| + [|J(zo)|| < Ll|Z — ol + [[J (o)
< L;jDo+ ||J(x0)|l, Yz € co(Lys(z)). (1.9)

Thus, by the Mean Value Inequality and A3, we have
[1F(x) = F)ll < (LsDo + ([T (xo)l]) |z = yll, (1.10)
and
IEW) < F(y) = Flxo)ll + 1F(zo) | < (LyDo + [[J (o)) Do + [ F(wo)[|. - (1.11)
Finally, combining (L.8)-(L.11) and A1, we obtain

IVf(2) = VWl < (LsDo+1J(zo0)l)* o =yl
+Ly [(Ly Do + [[J (o)) Do + [ F(zo) I] [l = wll,

and so, (1.6 holds for L given in (1.7)). 0O

The next lemma guarantees that the iterates of Algorithm 1 are well-defined.

Lemma 1.2. Suppose that A1-A8 hold and let x), (k > 0) be an iterate in Algorithm 1.
If (Vf(xr), Fxg)) # 0 and

2V f (1), 01 F ()]
V<= Ul F@) P

max

(1.12)

14



with L defined in the Lemma then

min { f (zx + ao, F(z)), f(zr — a0, F(z)} < f(op) +vp + 0 — pa® fay).

Proof. Let us divide the proof in two cases.
Case I: (Vf(zy),01F (zx)) < 0.

In this case, we will show that
fzp + aopF(zy)) < flag) + ve + 0 — pa® f(x).
For that, assume by contradiction that is not true, that is,
fax + aopF(zx)) > flar) + v + 0 — pa f ().

Let us define

fl<t) = f(xk + tO’kF(LCk)) — [f(:ck) + 143 -+ 0k — thf(.CCk)] .

(1.13)

(1.14)

(1.15)

Then, by ([1.15)), we have & (0) = —vp—0r < 0 < & (a). Consequently, by the Intermediate

Value Theorem, there exists & € (0, ) such that & (&) = 0, that is,

f(xx + aopF(xx)) = fan) + vk + 0 — p(&)° f (1)

(1.16)

By Remark 1.3 and (1.16)), we have wy, 2y, + &0y F (zx) € Lf(z9). Then, combining ((1.16)

and Lemma [1.7], it follows that

—p(a)?f(zx) < flae+ aopF(zr)) — f(x)

< a(Vf (). o (@) + “ PP

ao?
= —paf(zr) <V [f(z),onF (i) + %IIF(W!P

p+ Lo,

— (VS (o)) < & (P57 ) ()

o> 2@, oeF(ae)) 2V (k) 0xF ()]

(0 + Lo IIF(@i)l* - (p+ Log, )| F () [[*

Since a > &, it follows that

2|(V f(xx), onF (1))
(0 + Logua) | F ()|

contradicting (1.12]). Thus, (1.14) must be true.

15



Case II: (Vf(xy), opF(xy)) > 0.

In this case, we will show that
fzp — o, F(zp)) < f(an) + ve + 0 — pa® f(zp). (1.17)
For that, assume by contradiction that is not true, that is,
f(zp — aopF(xy)) > flar) + ve + 0 — pa® f(x). (1.18)
Let us define
&(t) = f(ap — torF(zx)) — [f(zr) + v + 0 — pt® f ()] -

Then, by (1.18)), we have £(0) = —1p—0 < 0 < &(a). Consequently, by the Intermediate
Value Theorem, there exists & € (0, «) such that &(a) = 0, that is,

far — aopF(xy)) = f(x1) + vi + O — p(@)? f (21). (1.19)

As in Case I, by Remark (1.19) and Lemma we obtain

—p(@)f(xr) < flaon — aoF(zy)) — f(ar) )
< (91, onF ) + X o a2
Lao?

= —paf(zr) < —(Vf(zp), onF (1)) + %HF(%)”Q

— (VS o) < @ (ZEE ) | F()|?

20V f(ax), ol (xx)) _ 2[(Vf(2), 0k F(1))]
(p+ Lod ) IE@)ll> (o + Logun) |1 F () >

Since a > @, it follows that

— a>

2|(V f(xx), onF (1))
(0 + Logua) | F ()|

contradicting (1.12)). Thus, (1.17) must be true. 0

From Lemma [1.2] we can obtain a lower bound for a4 in Algorithm 1.

Lemma 1.3. Suppose that A1-A8 hold and let x); be an iterate in Algorithm 1. If
(Vf(xr), F(zr)) #0, then

(1.20)

Q> min {1,

2680min|(V f (), F(x1))] }
(p+ Lot ) IF () ? )

16



Proof. 1f ¢, = 0, then ap, = 1 and ((1.20) holds. If ¢, > 0, it follows from Step 2 of
Algorithm 1 that

min { f(zx + B% o F(xy)), f (o — 8% o F(ax))} > flax) + v+ 0 — p (8% flax).
In view of Lemma [1.2] we must have

2[(V f (k) on (1))

ﬁék—l
(0 + LoToa) I1F ()2

and so

2B|(V f(zk), o1 (x))]

(p+ Lopae I F(z0)]1”

In this case, the conclusion folows from the inequality above and |o%| > opin. [
The theorem below establishes that, given € > 0, Algorithm 1 takes at most O (e?)

iterations to generate xj such that i (zy) <e.

ap = pB%18 >

Theorem 1.1. Suppose that A1-A3 hold and let {xy},-, be generated by Algorithm 1.

Given € > 0, the number of elements of the set

Qe) ={k : Y(xy) > €} (1.21)

is bounded as follows
2 +v+40
€e)] < (f(wo) + v +0) -2,

€
N . { 2/60-7711” }2
pmins 1, ————

(1.22)

p+ Lo?

max

Proof. By Steps 2 and 3 of Algorithm 1 and Lemma[L.3] if k& € Q(e), we have

Or + vk + f(xr) — flzes) > pajf(xy)

v
2
=
=

1 9 250’mm ? |<Vf
§||F(xk)!| < +L0,2mx) 2|]F Ty;) ||2 }

I, o }

v
N
E.
=
,_/H,_/H,_/H/—/H/—’H
—_
N
i)
—+ [\
@
S~ Q
YSES
b
8
N———
[\
——
=
=

2 min 2
1, <pf;+) } é2. (1.23)

17



Then, combining ((1.23)), (1.2) and A2, it follows that

P . QBUmzn ? 2 P . 2/60m7,n ? 2
5 min L ——s e’|Qe)| = Z Smind 1, | ———— €
p+ Lo-max keQ(e) 2 Pt LO'max

400
< Y (flaw) = flaren) + ve+6k)
k=0
00 +o00
< f(l’o) +Zl/k+29k
k=0 k=0
< flxzo) +v+6.
Therefore, Q(e) satisfies (1.22). 0

Remark 1.4. Let N; be the number of function evaluations at the k-th iteration of Algo-
rithm 1. Note that Ny, < 2(x +1). If ¢(zy) > € with e € (0,1), then, by Lemma[1.5 and

, we have

ap = 6lk Z min {1’ 250'm1n|<Vf(I’k),F(ka)>|}

(P + Logae) | F' (k)|

. 260 min (V£ (20), F(x)] }

= {1’ (p+ Lo%un) [(Ls Do + [T (o)) Do + | E(xo)ll  1F(zn)]

> min {1 280 min€ }

"(p+ Lo2,,) [(Ls Do + 17 (o)) Do + [ F(zo)]]
. 250-mm —

= mn {1’ (p+ LoZ) (L Do + [T (o)) Do + [ F (o) } €T e

Consequently,
N <2(0x +1) §2+21%E;36)

Combining this result with Theorem it follows that Algorithm 1 performs at most
O (|log(e)|e™?) evaluations of f(.) to generate the first iterate xy for which ¥ (xy) < €.

Corollary 1.1. Suppose that A1-A3 hold and let {xk‘}kzo be generated by Algorithm 1.
Then {xy} has a limit point x* such that ¥ (z*) = 0.

Proof. First, let us show that
lim ¢(xy) = 0. (1.24)

k——+o00
Indeed, if we assume that ([1.24)) does not hold, then there exist ¢ > 0 and a subsequence
{ij}jeN of {1} such that
2/)(:Ekj) >e€, VjeN.

Consequently, for this e, we would have |Q(e)| = 400, contradicting Theorem [1.1] There-
fore, (1.24)) is true. Since {xy} C Ly(xo), it follows from A3 that {x;},.y is bounded.

18



Thus, {z} possess a subsequence {wy, },. that is convergent, let us say

lim xp, = 2™, (1.25)

L—+o00

Notice that ¢(-) is continuous. Hence, combining ([1.24)) and (1.25) we conclude that
(x) = 0. m

Remark 1.5. Notice that if the mapping F is strictly monotone, then J(z) is positive-

definite and so

P(*)=0 = F(@*)=0 or (Vf(z"),F(z*))=0
= F(*)=0 or F@)"J(2*)F(z*)=0
= F(z")=0.

Therefore, when F is strictly monotone, at least one limit point of any sequence {Ty} .o

generated by Algorithm 1 is a zero of F'.

19



Chapter 2

A Subclass of Nonmonotone

Algorithms

Let us consider now the following algorithmic framework:

Algorithm 2.

Step 0. Given a starting point o € R™ and constants 0,,;,, 5 € (0,1) and p > 0,
choose a sequence {f)},-, of positive numbers satisfying >0 6, < 6 < 400, set
Co = f(zo) and k := 0. )

Step 1. Compute oy # 0 such that |ox| € [Tmin, Omaz], With 0 < 0pin < Opae < +00.
Step 2.1. Set ¢ := 0.

Step 2.2. If

[z — BopF () < Co+ 0k — p (ﬁg)g flze), (2.1)
then set £, = ¢, oy, = %, dp = —0F(x;) and go to Step 3. Otherwise, go to Step

2.3.
Step 2.3. If

f(ze+ B0 F(x1)) < Co+ 6 — p (56)2 f(zr), (2.2)

then set (), = ¢, ap = B%, dy = 0, F (1) and go to Step 3. Otherwise, set £ := £ + 1
and go to Step 2.2.
Step 3. Set x4 = x) + agdy, compute 01 € [dpmin, 1], set

Crp1 = (1 = 6p41) (Cr + k) + Opyr [ (T111), (2.3)

k =k + 1 and go to Step 1.

In Algorithm 2, different choices for dy1, give different nonmonotone terms Cj and,

20



consequently, different nonmonotone algorithms. For example, consider the choice

1

Sopr =
T Qi+ 1

where QO = 17 Qk+l = 77ka + 1 and e € [nmin7nmaw] with 0 < Thmin < Nmaz < 1. In this

case we have

Qo = 1

Q1 = 1+mn

Q: = 1+mQi=1+n+mno

Qs = 1+mQ2=1+n+nm + mmn

Kk
Qer = 1+ Y T gmes.
=0

Since M € [0, Nynaz| for all k, it follows that

k

QkJrl S 1 + Z Hg:(]nmax
=0
k
< 14> ik
=0
“+oo
<D M
=0
B 1
B 1— Nmax ‘
which gives
) L >1 =
k+1 — Z L = Tlmax = 9min-
T Qi !

Moreover, the corresponding updating rule for the nonmonotone terms is

Cit1 = (1= 0k41)(Cr + Ok) + Spi1 f(Tp41)
o MmeQr f(Trp)
O omQk + 1(Ck O+ Qi + 1
MQr(Cr + 0k) + f(Tr41)

Qk—H

This is exactly how the nonmonotone terms are defined in the Algorithm N-DF-SANE
proposed by Cheng and Li [2]. Therefore, N-DF-SANE is a particular instance of Algo-
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rithm 2.

Our next lemma establishes that Algorithm 2 is a particular case of Algorithm 1 with

the corresponding sequence {1} satisfying A2. The proof is an adaptation of the proof

of Theorem 4 in [5]
Lemma 2.1. Let {Cy},, be generated by Algorithm 2. Then,
Ck‘ :f(xk)+yk7 Vka

with
=0 and vpy = (1= 0p1)(f(zr) + vk + Ok) + (Opg1 — 1) f(Tp1).

Moreover, the sequence {Vk}kzo defined in satisfies

ZVk ( — m’")(f(:co)+9)zy.

mzn

Proof. Since
Co = f(wo) = f(o) + w0,

(2.4)

(2.5)

(2.6)

it follows that (2.4]) holds for £ = 0. Assume that (2.4]) is true for some k& > 0. Then, by

the induction assumption and (2.5) we have

Cit1 = (1= 0p41)(Cr + Op) + g1 f (Tr41)
(1 = 6p1) (f (2r) + v + k) + Okgr f (2h11)
= flzrr) +[(1 = ) (f (2r) + vk + k) + (01 — 1) f(2h41)]

= f(@rs1) + Vit1,

that is, (2.4]) also holds for k£ 4+ 1. Therefore, (2.4)) is true.
On the other hand, since

J(@ig1) + Vi1 = Crr = f(an) + v + O — 01 [f () + v + 06 — f(r41)]

we have

Orr1 [f (o) + v + Ok — f(wrg1)] = (f () +vr + 0k) — (f(Thg1) + Vry1)) -

Then, summing up the above equalities for k¥ = 0,..., N and using f(zys1) > 0 and
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zjg 0, < 0, we obtain

N N N
Z5k+1 [f(zr) + v + 0k — fzr)] < Z flr) = flape) + Z Ok
k=0 k=0 k=0
N
+ Z Vi — Vi1
k=0
N
= f(wo) = f(zng1) + ZQk + 1Y — VNt
k=0
+oo
< flxo) + Y b
k=0
< flxg) + 0. (2.7)
Combining and 0g11 > Omin, it follows that
N N-1 N1 s
Z Ve = Vg1 < Z ( kH) Okt1 [f(SCk) + v+ 0 — f($k+1)]
k=0 k=0 o\ Ok

IN

1 — Gin | =
( mm) 6k+1 [f(xk) + v + Gk — f(l'k-i-l)]
k=0

6min

< (F5) e +o).

Because N > 0 is arbitrary, we conclude that Z v <

) +o. o

By Lemma , Algorithm 2 is a particular case of Algorithm 1 with {v,} satisfying
A2. Combining this fact with Theorem [I.I]and Remark [I.4] we obtain the following result.

5min

Theorem 2.1. Suppose that A1 holds. If A8 holds for v given in @ then, given € > 0,
Algoritm 2 needs at most O(|log(€)|e™?) evaluations of f(-) to generate the first x;, such
that ¥ (xy) < e.
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Chapter 3
Illustrative Numerical Results

In order to investigate the numerical performance of Algorithms 1 and 2, we performed

some numerical numerical experiments comparing the following four MATLAB codes:

e DF-SANE: the nonmonotone algorithm in [8] that corresponds to Algorithm 1

F
with 6, = % and

vp = max [f(xp—j)] — f(zn),

where m(0) = 0 and m(k) = min {m(k — 1) + 1,10}. Note that this method is not

covered by our theory.

e N-DF-SANE: the nonmonotone algorithm in [2] that corresponds to Algorithm 2

: |7 (o) |
with ek = m and
1
I ———
T Qr + 1
where Qo = 1, Q1 = mQr + 1 and n;, = 0.85.
F
o NM1: Algorithm 2 with 6 = % and
Spp1 = 1073,

This choice of 0y is inspired by [3]

e NM2: Algorithm 2 with ), = 0.8*+1 (k + 1)8|| F(z)|? and

L F@)? }
Sory = 1073, @I
ma"{ [F ()2 +1
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In all implementations we consider parameters o, = 1071, 0mae = 1019, 09 =1, 3 =10.5

and p = 10~%. The spectral stepsize o}, is computed as in [§]. Specifically, let

(Sks Sk)
<5k; yk>7

O =

where s = xp — 251 and y,, = F(xg) — F(zg—1). We set oy = &3 whenever || €

[Cimin, Omaz]. Otherwise, we set

or = IF@)|™ i 107 < [[F(a)] < 1,
107, it F ()] < 1075,

The codes were applied to a set of 30 nonconvex test problems of unconstrained mini-
mization [I2], most of them highly nonlinear. In our tests, we applied the codes to find

zeros of the gradients of these problems. We used the stopping rules

IF@l s
[ F' (o) |2
and
k = k0 = 2000.

Table 3.1 shows the number of function evaluations required by the codes for solving
each test problem. An entry “F” indicates that the maximum number of 2000 iterations
was reached. Table 3.2 contains a summary with the number of problems solved by each
code and the number of problems in which each code was strictly better than the others
in terms of function evaluations. As we can see, NM1 and NM2 (the new variants of
N-DF-SANE covered by our theory) outperformed N-DF-SANE and DF-SANE.

For a complementary assessment of the codes, we also used the data profiles proposed

in [13]. The convergence test for the codes is:

f@o) = flx) = (1 = 7)(f(x0) — fL); (3.1)

where 7 > 0 is a tolerance, xg is the starting point for the problem, and f;, is computed for
each problem as the smallest value of f(-) obtained by any solver within a given number
of function evaluations. Let ¢, ; be the number of function evaluations required by solver
s to satisfy the above convergence test for problem p. For each solver s we plot the graph

of the corresponding data profile ds(-) defined by

number of problems for which ¢, , < «

ds(a) =

total number of test problems

Note that ds(«) is the percentage of problems solved by solver s with o function evalua-
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tions.
Specifically, we considered 7 € {1073,107°} and a budget of 1000 function evaluations.
The results in Figure 3.1 confirm the good performance of NM2.

Problem (n,m) DF-SANE | N-DF-SANE | NM1 | NM2
1. Rosenbrock (2,2) 123 F 741 460
2. Freudenstein-Roth (2,2) 339 240 114 69
3. Powell badly scaled (2,2) 56 56 56 56
4. Brown badly scaled (2,3) F F F F
5. Beale (2,3) 12 39 F 57
6. Jennrich-Sampson (2,10) 1 1 1 1
7. Helical valley (3,3) 348 207 76 109
8. Bard (3,15) 127 162 123 31
9. Gaussian (3,15) 7 7 7 9
10. Meyer (3,16) ) 40 0 | 40
11. Gulf (3,3) 1 1 1 1
12. Box (3,3) 28 27 27 27
13. Powell singular (4,4) 97 81 64 64
14. Wood (4,6) 64 62 62 | 62
15. Kowalik-Osborne (4,11) 516 442 225 59
16. Brown-Dennis (4,20) 87 94 76 69
17. Osborne 1 (5,33) F F 87 92
18. Biggs EXP6 (6,6) 898 399 333 30
19. Osborne 2 (11,65) F F 1234 | 97
20. Watson (31,31) F F 953 | T
21. Extended Rosen (4,4) 123 F 82 467
22. Extended Powell sing. (4,4) 97 81 64 64
23. Penalty I (6,7) 25 2% % | 25
24. Penalty 11 (5,10) 50 35 50 | 44
25. Variably dimensioned (10,12) 56 56 56 o6
26. Trigonometric (10,10) 57 57 57 57
27. Discrete bound. value (4,4) 38 50 36 37
28. Discrete int. equation (20,20) 7 7 7 7
29. Broyden tridiagonal (20,20) 29 29 29 95
30. Broyden banded (10,10) 38 38 38 41

Table 3.1: Number of function evaluations for the test problems from [12].

Table 3.2: Number of problems solved by each code and the number of problems in which

Code Succeeded | Better than others codes
DF-SANE 26 1
N-DF-SANE 24 2
NM1 28 5
NM2 28 6

each code was strictly better than the others in terms of function evaluations.
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Figure 3.1: Data Profile, with tolerance 7 = 1072 and 7 = 10~°
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Conclusion

In this dissertation we studied the worst-case complexity of a class of derivative-free
nonmonotone methods for nonlinear equations that includes the N-DF-SANE method [2].
For this class of methods, we proved that if the Jacobian of the mapping F'(-) is Lipschitz
continuous, the methods take at most O (¢72) iterations to generate x such that ¢(x;,) <
e, where 9(-) is a stationarity measure for the merit function f(z) = (1/2)||F(2)||3.
From this iteration-complexity bound we obtained a lim-type global complexity result
and also an evaluation-complexity bound of O (] log(€)|e™2). In our preliminary numerical
experiments, the implementation of a new variant of N-DF-SANE (referred to as NM2)
outperformed N-DF-SANE and also DF-SANE [§] on a subset of 30 problems from the
Moré-Garbow-Hillstrom collection [12]. As a future work, we plan to study the worst-
case complexity of the same class of methods applied to the problem of finding zeros of
strongly monotone mappings. In this case, an improved evaluation-complexity bound of
O (| log(e)|) is expected.
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