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RESUMO

Nesta dissertação estudamos uma classe geral de métodos não-monótonos sem derivadas

para solução de sistemas de equações não-lineares, incluindo o método N-DF-SANE

proposto em (IMA J. Numer. Anal. 29: 814–825, 2009). Esses métodos correspon-

dem à métodos de otimização sem derivadas aplicados à minimização de uma função

mérito conveniente. O comportamento não-monótono é controlado por duas sequências

de parâmetros que definem os procedimentos de busca linear. Supondo que a função que

define as equações não-lineares possui Jacobiana Lipschitz, mostramos que os métodos da

referida classe precisam de no máximo O (| log(ε)|ε−2) avaliações da função para gerarem

um ponto estacionário da função mérito com precisão ε > 0. A generalidade da nossa

análise permite mais liberdade para o desenvolvimento de novos métodos em termos das

escolhas para as sequências que controlam o comportamento não-monótono dos valores da

função mérito. Essa caracteŕıstica é ilustrada por experimentos numéricos preliminares

incluindo novas variantes do método N-DF-SANE.

Palavras-chave: sistemas não-lineares de grande porte, métodos não-monótonos, métodos

sem derivadas, complexidade de pior caso



ABSTRACT

In this dissertation we study a wide class of derivative-free nonmonotone methods for

solving nonlinear systems of equations, covering the method N-DF-SANE proposed in

(IMA J. Numer. Anal. 29: 814–825, 2009). These methods correspond to derivative-free

optimization methods applied to the minimization of a suitable merit function. The non-

monotonicity is controlled by two sequences of parameters that define the line-search pro-

cedure. Assuming that the mapping defining the nonlinear equations has Lipschitz contin-

uous Jacobian, we show that the methods in the referred class need at mostO (| log(ε)|ε−2)

function evaluations to generate an ε-approximate stationary point of the merit function.

The generality of our analysis allows more freedom for the design of new methods in terms

of the choices for the sequences that control the nonmonotone behavior of the merit func-

tion values. This feature is illustrated by preliminary numerical experiments including

new variants of the method N-DF-SANE.

Keywords: large scale nonlinear systems, nonmonotone methods, derivative-free meth-

ods, worst-case complexity
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Introduction

In this dissertation we study methods to solve nonlinear equations of the form

F (x) = 0, (1)

where F : Rn → Rn is a continuously differentiable mapping. Several problems in Engi-

neering, Statistics, Economy and Chemistry can be reduced to the solution of nonlinear

equations [4]. Moreover, nonlinear equations also arise in the numerical solution of certain

differential equations [7, 10, 15].

The main iterative scheme for solving (1) is Newton’s method [14]. Its advantage

is that it converges very fast starting from a good initial guess. However, when the

dimension n is very large, Newton’s method becomes very expensive since its execution

requires the computation and storage of the Jacobian matrix of F ( · ), and also the solution

of a large-scale linear system at each iteration. Thus, in this work, we are interested in

derivative-free methods for solving (1), that is, methods that do not require the use of

the Jacobians of F ( · ) neither the solution of linear systems. Specifically, we focus on

derivative-free nonmonotone spectral methods [2, 8].

The Spectral Approach for Nonlinear Equations (SANE) was introduced by La Cruz

and Raydan [9]. Subsequently, La Cruz, Mart́ınez and Raydan [8] presented a derivative-

free version of SANE, which they called DF-SANE. The latter method uses a derivative-

free version of the nonmonotone line-search proposed by Grippo, Lampariello and Lucidi

[6]. Another derivative-free variant of SANE, called N-DF-SANE, was proposed by Cheng

and Li [2], in which they use a derivative-free version of the nonmonotone line-search

proposed by Zhang and Hager [17]. Numerical experiments reported in [2] indicated

that N-DF-SANE was often better than DF-SANE in terms of the number of function

evaluations and the CPU time.

Motivated by these observations, in this dissertation we study a class of derivative-

free nonmonotone methods for solving (1) that includes the N-DF-SANE method. More

specifically, we analyze the worst-case complexity of these methods. In the context of

derivative-based methods1, worst-case complexity bounds of O (ε−2) or O (| log(ε)|ε−2)

1By derivative-based methods we mean methods that make explicit use of the Jacobian matrix of F ( · )
or its product with some vector.
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have been obtained in [16, 18, 11, 1]. Under the assumption that the Jacobian of F ( · )
is Lipschitz continuous, we show that the methods in the referred class need at most

O (| log(ε)|ε−2) function evaluations to generate an ε-approximate stationary point of the

merit function f(x) = (1/2)‖F (x)‖2
2.

In the methods analyzed, the nonmonotonicity is controlled by two sequences of pa-

rameters that define the line-search procedure. The generality of our analysis allows

more freedom for the design of new methods in terms of the choices for these sequences.

This feature is illustrated by preliminary numerical experiments including new variants

of the method N-DF-SANE applied to a subset of the Moré-Garbow-Hillstrom [12] test

problems.

This dissertation is organizated as follows. In Chapter 1, we analyze the worst-case

complexity of a general class of derivative-free non-monotone method. In Chapter 2, we

present a particular case that englobes N-DF-SANE method. In Chapter 3, we present

the numerical experiments.

11



Chapter 1

General Class of Nonmonotone

Algorithms

In what follows, we will consider the merit function f : Rn → R defined by

f(x) =
1

2
‖F (x)‖2

2. (1.1)

Our analysis will be carried out for the general algorithm described below.

Algorithm 1. (General Nonmonotone Method)

Step 0. Given a starting point x0 ∈ Rn and constants β ∈ (0, 1) and ρ > 0, choose a

sequence {θk}k≥0 of positive numbers satisfying

+∞∑
k=0

θk ≤ θ < +∞, (1.2)

and set k := 0.

Step 1. Compute σk 6= 0 such that |σk| ∈ [σmin, σmax], with 0 < σmin ≤ σmax < +∞.

Step 2.1. Set ` := 0 and choose νk ≥ 0.

Step 2.2. If

f
(
xk − β`σkF (xk)

)
≤ f(xk) + νk + θk − ρ

(
β`
)2
f(xk), (1.3)

then, set `k = `, αk = β`k , dk = −σkF (xk) and go to Step 3. Otherwise, go to Step 2.3.

Step 2.3. If

f
(
xk + β`σkF (xk)

)
≤ f(xk) + νk + θk − ρ

(
β`
)2
f(xk), (1.4)

then set `k = `, αk = β`k , dk = σkF (xk) and go to Step 3. Otherwise, set ` := `+1, and go

to Step 2.2.

Step 3. Set xk+1 = xk + αkdk, k := k + 1 and go to Step 1.

12



Let us define the stationarity measure

ψ(x) =

 min

{
‖F (x)‖, |〈∇f(x), F (x)〉|

‖F (x)‖

}
, whenever F (x) 6= 0,

0, otherwise.
(1.5)

In Algorithm 1, we want to find x∗ such that ψ(x∗) = 0.

Remark 1.1. If F (x∗) = 0 then, by (1.5) we have ψ(x∗) = 0. However, the converse

is not necessarily true, since we may have 〈∇f(x∗), F (x∗)〉 = 0 with F (x∗) 6= 0 and

∇f(x∗) 6= 0. For example, consider F (z) = F (x, y) = (sin2 x, y − 1). We have

J(z) =

(
2 sin(x) cos(x) 0

0 1

)
.

At the point z∗ =

(
3π

4
,
3

2

)
, we have that F (z∗) =

(
1

2
,
1

2

)
,

J(z∗) =

(
−1 0

0 1

)

and ∇f(z∗) = J(z∗)TF (z∗) =

(
−1

2
,
1

2

)
. This implies that 〈∇f(z∗), F (z∗)〉 = 0, hence

ψ(z∗) = 0 but F (z∗) 6= 0 and ∇f(z∗) 6= 0.

Let us consider the following assumptions:

A1 The mapping F : Rn → Rn is continuously differentiable and its Jacobian J : Rn →
Rn×n is LJ -Lipschitz continuous.

A2
∑+∞

k=0 νk ≤ ν < +∞.

A3 The level set Lf (x0) := {x ∈ Rn : f(x) ≤ f(x0) + ν + θ} is bounded as follows

sup {‖x− x0‖ : x ∈ Lf (x0)} ≡ D0 < +∞.

Remark 1.2. Under A3, if x̄ ∈ co (Lf (x0)) (i.e., if x̄ belongs to the convex hull of Lf (x0))

then ‖x̄− x0‖ ≤ D0.

Remark 1.3. Combining (1.3), (1.4), (1.2) and A2, if {xk}Nk=0 is well-defined, then

f(xk) ≤ f(x0) +
k−1∑
i=0

νk +
k−1∑
i=0

θk ≤ f(x0) + ν + θ,

for all k ∈ {1, . . . , N}. Thus, we have {xk}Nk=0 ⊂ Lf (x0) and so, under A3, ‖xk−x0‖ ≤ D0

for all k ≥ 0.

13



Lemma 1.1. Suppose that A1-A3 hold. Then, for function f( · ) in (1.1) we have

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖2, ∀x, y ∈ Lf (x0), (1.6)

where

L = (LJD0 + ‖J(x0)‖)2 + LJ [(LJD0 + ‖J(x0)‖)D0 + ‖F (x0)‖] . (1.7)

Proof. To obtain (1.6), it is enough to show that ∇f( · ) is L-Lipschitz continuous on

co (Lf (x0)). Given x, y ∈ co (Lf (x0)),

‖∇f(x)−∇f(y)‖ = ‖J(x)TF (x)− J(y)TF (y)‖

≤ ‖J(x)TF (x)− J(x)TF (y)‖+ ‖J(x)TF (y)− J(y)TF (y)‖

≤ ‖J(x)‖‖F (x)− F (y)‖+ ‖J(x)− J(y)‖‖F (y)‖. (1.8)

From A1 and Remark 1.2, we get

‖J(x̄)‖ ≤ ‖J(x̄)− J(x0)‖+ ‖J(x0)‖ ≤ LJ‖x̄− x0‖+ ‖J(x0)‖

≤ LJD0 + ‖J(x0)‖, ∀x̄ ∈ co (Lf (x0)) . (1.9)

Thus, by the Mean Value Inequality and A3, we have

‖F (x)− F (y)‖ ≤ (LJD0 + ‖J(x0)‖) ‖x− y‖, (1.10)

and

‖F (y)‖ ≤ ‖F (y)− F (x0)‖+ ‖F (x0)‖ ≤ (LJD0 + ‖J(x0)‖)D0 + ‖F (x0)‖. (1.11)

Finally, combining (1.8)-(1.11) and A1, we obtain

‖∇f(x)−∇f(y)‖ ≤ (LJD0 + ‖J(x0)‖)2 ‖x− y‖

+LJ [(LJD0 + ‖J(x0)‖)D0 + ‖F (x0)‖] ‖x− y‖,

and so, (1.6) holds for L given in (1.7).

The next lemma guarantees that the iterates of Algorithm 1 are well-defined.

Lemma 1.2. Suppose that A1-A3 hold and let xk (k ≥ 0) be an iterate in Algorithm 1.

If 〈∇f(xk), F (xk)〉 6= 0 and

0 < α ≤ 2|〈∇f(xk), σkF (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2
, (1.12)

14



with L defined in the Lemma 1.1, then

min {f(xk + ασkF (xk)), f(xk − ασkF (xk))} ≤ f(xk) + νk + θk − ρα2f(xk). (1.13)

Proof. Let us divide the proof in two cases.

Case I: 〈∇f(xk), σkF (xk)〉 < 0.

In this case, we will show that

f(xk + ασkF (xk)) ≤ f(xk) + νk + θk − ρα2f(xk). (1.14)

For that, assume by contradiction that (1.14) is not true, that is,

f(xk + ασkF (xk)) > f(xk) + νk + θk − ρα2f(xk). (1.15)

Let us define

ξ1(t) := f(xk + tσkF (xk))−
[
f(xk) + νk + θk − ρt2f(xk)

]
.

Then, by (1.15), we have ξ1(0) = −νk−θk < 0 < ξ1(α). Consequently, by the Intermediate

Value Theorem, there exists α̂ ∈ (0, α) such that ξ1(α̂) = 0, that is,

f(xk + α̂σkF (xk)) = f(xk) + νk + θk − ρ(α̂)2f(xk). (1.16)

By Remark 1.3 and (1.16), we have xk, xk + α̂σkF (xk) ∈ Lf (x0). Then, combining (1.16)

and Lemma 1.1, it follows that

−ρ(α̂)2f(xk) ≤ f(xk + α̂σkF (xk))− f(xk)

≤ α̂〈∇f(xk), σkF (xk)〉+
L(α̂)2

2
‖σkF (xk)‖2

=⇒ −ρα̂f(xk) ≤ 〈∇f(xk), σkF (xk)〉+
Lα̂σ2

max

2
‖F (xk)‖2

=⇒ −〈∇f(xk), σkF (xk)〉 ≤ α̂

(
ρ+ Lσ2

max

2

)
‖F (xk)‖2

=⇒ α̂ ≥ − 2〈∇f(xk), σkF (xk)〉
(ρ+ Lσ2

max)‖F (xk)‖2
=

2|〈∇f(xk), σkF (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2
.

Since α > α̂, it follows that

α >
2|〈∇f(xk), σkF (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2
,

contradicting (1.12). Thus, (1.14) must be true.
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Case II: 〈∇f(xk), σkF (xk)〉 > 0.

In this case, we will show that

f(xk − ασkF (xk)) ≤ f(xk) + νk + θk − ρα2f(xk). (1.17)

For that, assume by contradiction that (1.17) is not true, that is,

f(xk − ασkF (xk)) > f(xk) + νk + θk − ρα2f(xk). (1.18)

Let us define

ξ2(t) := f(xk − tσkF (xk))−
[
f(xk) + νk + θk − ρt2f(xk)

]
.

Then, by (1.18), we have ξ2(0) = −νk−θk < 0 < ξ2(α). Consequently, by the Intermediate

Value Theorem, there exists ᾱ ∈ (0, α) such that ξ2(ᾱ) = 0, that is,

f(xk − ᾱσkF (xk)) = f(xk) + νk + θk − ρ(ᾱ)2f(xk). (1.19)

As in Case I, by Remark 1.3, (1.19) and Lemma 1.1, we obtain

−ρ(ᾱ)2f(xk) ≤ f(xk − ᾱσkF (xk))− f(xk)

≤ −ᾱ〈∇f(xk), σkF (xk)〉+
L(ᾱ)2

2
‖σkF (xk)‖2

=⇒ −ρᾱf(xk) ≤ −〈∇f(xk), σkF (xk)〉+
Lᾱσ2

max

2
‖F (xk)‖2

=⇒ 〈∇f(xk), σkF (xk)〉 ≤ ᾱ

(
ρ+ Lσ2

max

2

)
‖F (xk)‖2

=⇒ ᾱ ≥ 2〈∇f(xk), σkF (xk)〉
(ρ+ Lσ2

max)‖F (xk)‖2
=

2|〈∇f(xk), σkF (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2
.

Since α > ᾱ, it follows that

α >
2|〈∇f(xk), σkF (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2
,

contradicting (1.12). Thus, (1.17) must be true.

From Lemma 1.2, we can obtain a lower bound for αk in Algorithm 1.

Lemma 1.3. Suppose that A1-A3 hold and let xk be an iterate in Algorithm 1. If

〈∇f(xk), F (xk)〉 6= 0, then

αk ≥ min

{
1,

2βσmin|〈∇f(xk), F (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2

}
. (1.20)
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Proof. If `k = 0, then αk = 1 and (1.20) holds. If `k > 0, it follows from Step 2 of

Algorithm 1 that

min
{
f(xk + β`k−1σkF (xk)), f(xk − β`k−1σkF (xk))

}
> f(xk) + νk + θk − ρ

(
β`k−1

)2
f(xk).

In view of Lemma 1.2, we must have

β`k−1 >
2|〈∇f(xk), σkF (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2

and so

αk = β`k−1β >
2β|〈∇f(xk), σkF (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2
.

In this case, the conclusion (1.20) folows from the inequality above and |σk| ≥ σmin.

The theorem below establishes that, given ε > 0, Algorithm 1 takes at most O (ε−2)

iterations to generate xk such that ψ(xk) ≤ ε.

Theorem 1.1. Suppose that A1-A3 hold and let {xk}k≥0 be generated by Algorithm 1.

Given ε > 0, the number of elements of the set

Ω(ε) = {k : ψ(xk) > ε} (1.21)

is bounded as follows

|Ω(ε)| ≤ 2(f(x0) + ν + θ)

ρmin

{
1,

2βσmin
ρ+ Lσ2

max

}2 ε
−2. (1.22)

Proof. By Steps 2 and 3 of Algorithm 1 and Lemma 1.3, if k ∈ Ω(ε), we have

θk + νk + f(xk)− f(xk+1) ≥ ρα2
kf(xk)

≥ ρmin

{
1,

(
2βσmin

ρ+ Lσ2
max

)2 |〈∇f(xk), F (xk)〉|2

‖F (xk)‖4

}
f(xk)

= ρmin

{
1

2
‖F (xk)‖2,

(
2βσmin

ρ+ Lσ2
max

)2 |〈∇f(xk), F (xk)〉|2

2‖F (xk)‖2

}

≥ ρ

2
min

{
1,

(
2βσmin

ρ+ Lσ2
max

)2
}

min

{
‖F (xk)‖,

|∇f(xk), F (xk)〉|
‖F (xk)‖

}2

=
ρ

2
min

{
1,

(
2βσmin

ρ+ Lσ2
max

)2
}
ψ(xk)

2

>
ρ

2
min

{
1,

(
2βσmin

ρ+ Lσ2
max

)2
}
ε2. (1.23)
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Then, combining (1.23), (1.2) and A2, it follows that

ρ

2
min

{
1,

(
2βσmin

ρ+ Lσ2
max

)2
}
ε2|Ω(ε)| =

∑
k∈Ω(ε)

ρ

2
min

{
1,

(
2βσmin

ρ+ Lσ2
max

)2
}
ε2

≤
+∞∑
k=0

(f(xk)− f(xk+1) + νk + θk)

≤ f(x0) +
+∞∑
k=0

νk +
+∞∑
k=0

θk

≤ f(x0) + ν + θ.

Therefore, Ω(ε) satisfies (1.22).

Remark 1.4. Let Nk be the number of function evaluations at the k-th iteration of Algo-

rithm 1. Note that Nk ≤ 2(`k + 1). If ψ(xk) > ε with ε ∈ (0, 1), then, by Lemma 1.3 and

(1.11), we have

αk = βlk ≥ min

{
1,

2βσmin|〈∇f(xk), F (xk)〉|
(ρ+ Lσ2

max)‖F (xk)‖2

}
≥ min

{
1,

2βσmin
(ρ+ Lσ2

max) [(LJD0 + ‖J(x0)‖)D0 + ‖F (x0)‖]
|〈∇f(xk), F (xk)〉|
‖F (xk)‖

}
> min

{
1,

2βσminε

(ρ+ Lσ2
max) [(LJD0 + ‖J(x0)‖)D0 + ‖F (x0)‖]

}
≥ min

{
1,

2βσmin
(ρ+ Lσ2

max) [(LJD0 + ‖J(x0)‖)D0 + ‖F (x0)‖]

}
ε ≡ κcε.

Consequently,

Nk ≤ 2(`k + 1) ≤ 2 +
2 log(κcε)

log(β)
.

Combining this result with Theorem 1.1 it follows that Algorithm 1 performs at most

O (| log(ε)|ε−2) evaluations of f( . ) to generate the first iterate xk for which ψ(xk) ≤ ε.

Corollary 1.1. Suppose that A1-A3 hold and let {xk}k≥0 be generated by Algorithm 1.

Then {xk} has a limit point x∗ such that ψ(x∗) = 0.

Proof. First, let us show that

lim
k→+∞

ψ(xk) = 0. (1.24)

Indeed, if we assume that (1.24) does not hold, then there exist ε > 0 and a subsequence{
xkj
}
j∈N of {xk} such that

ψ(xkj) > ε, ∀j ∈ N.

Consequently, for this ε, we would have |Ω(ε)| = +∞, contradicting Theorem 1.1. There-

fore, (1.24) is true. Since {xk} ⊂ Lf (x0), it follows from A3 that {xk}k∈N is bounded.
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Thus, {xk} possess a subsequence {xk`}`∈N that is convergent, let us say

lim
`→+∞

xk` = x∗. (1.25)

Notice that ψ( · ) is continuous. Hence, combining (1.24) and (1.25) we conclude that

ψ(x∗) = 0.

Remark 1.5. Notice that if the mapping F is strictly monotone, then J(x) is positive-

definite and so

ψ(x∗) = 0 ⇒ F (x∗) = 0 or 〈∇f(x∗), F (x∗)〉 = 0

⇒ F (x∗) = 0 or F (x∗)TJ(x∗)F (x∗) = 0

⇒ F (x∗) = 0.

Therefore, when F is strictly monotone, at least one limit point of any sequence {xk}k≥0

generated by Algorithm 1 is a zero of F .

19



Chapter 2

A Subclass of Nonmonotone

Algorithms

Let us consider now the following algorithmic framework:

Algorithm 2.

Step 0. Given a starting point x0 ∈ Rn and constants δmin, β ∈ (0, 1) and ρ > 0,

choose a sequence {θk}k≥0 of positive numbers satisfying
∑+∞

k=0 θk ≤ θ < +∞, set

C0 = f(x0) and k := 0.

Step 1. Compute σk 6= 0 such that |σk| ∈ [σmin, σmax], with 0 < σmin ≤ σmax < +∞.

Step 2.1. Set ` := 0.

Step 2.2. If

f
(
xk − β`σkF (xk)

)
≤ Ck + θk − ρ

(
β`
)2
f(xk), (2.1)

then set `k = `, αk = β`k , dk = −σkF (xk) and go to Step 3. Otherwise, go to Step

2.3.

Step 2.3. If

f
(
xk + β`σkF (xk)

)
≤ Ck + θk − ρ

(
β`
)2
f(xk), (2.2)

then set `k = `, αk = β`k , dk = σkF (xk) and go to Step 3. Otherwise, set ` := ` + 1

and go to Step 2.2.

Step 3. Set xk+1 = xk + αkdk, compute δk+1 ∈ [δmin, 1], set

Ck+1 = (1− δk+1) (Ck + θk) + δk+1f(xk+1), (2.3)

k := k + 1 and go to Step 1.

In Algorithm 2, different choices for δk+1, give different nonmonotone terms Ck and,
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consequently, different nonmonotone algorithms. For example, consider the choice

δk+1 =
1

ηkQk + 1
,

where Q0 = 1, Qk+1 = ηkQk + 1 and ηk ∈ [ηmin, ηmax] with 0 ≤ ηmin ≤ ηmax < 1. In this

case we have

Q0 = 1

Q1 = 1 + η0

Q2 = 1 + η1Q1 = 1 + η1 + η1η0

Q3 = 1 + η2Q2 = 1 + η2 + η2η1 + η2η1η0

...

Qk+1 = 1 +
k∑
j=0

Πj
i=0ηk−i.

Since ηk ∈ [0, ηmax] for all k, it follows that

Qk+1 ≤ 1 +
k∑
j=0

Πj
i=0ηmax

≤ 1 +
k∑
j=0

ηj+1
max

≤
+∞∑
j=0

ηjmax

=
1

1− ηmax
.

which gives

δk+1 =
1

Qk+1

≥ 1− ηmax ≡ δmin.

Moreover, the corresponding updating rule for the nonmonotone terms is

Ck+1 = (1− δk+1)(Ck + θk) + δk+1f(xk+1)

=
ηkQk

ηkQk + 1
(Ck + θk) +

f(xk+1)

ηkQk + 1

=
ηkQk(Ck + θk) + f(xk+1)

Qk+1

.

This is exactly how the nonmonotone terms are defined in the Algorithm N-DF-SANE

proposed by Cheng and Li [2]. Therefore, N-DF-SANE is a particular instance of Algo-
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rithm 2.

Our next lemma establishes that Algorithm 2 is a particular case of Algorithm 1 with

the corresponding sequence {νk} satisfying A2. The proof is an adaptation of the proof

of Theorem 4 in [5]

Lemma 2.1. Let {Ck}k≥0 be generated by Algorithm 2. Then,

Ck = f(xk) + νk, ∀k, (2.4)

with

ν0 = 0 and νk+1 = (1− δk+1)(f(xk) + νk + θk) + (δk+1 − 1)f(xk+1). (2.5)

Moreover, the sequence {νk}k≥0 defined in (2.5) satisfies

+∞∑
k=0

νk ≤
(

1− δmin
δmin

)
(f(x0) + θ) ≡ ν. (2.6)

Proof. Since

C0 = f(x0) = f(x0) + ν0,

it follows that (2.4) holds for k = 0. Assume that (2.4) is true for some k ≥ 0. Then, by

the induction assumption and (2.5) we have

Ck+1 = (1− δk+1)(Ck + θk) + δk+1f(xk+1)

= (1− δk+1)(f(xk) + νk + θk) + δk+1f(xk+1)

= f(xk+1) + [(1− δk+1)(f(xk) + νk + θk) + (δk+1 − 1)f(xk+1)]

= f(xk+1) + νk+1,

that is, (2.4) also holds for k + 1. Therefore, (2.4) is true.

On the other hand, since

f(xk+1) + νk+1 = Ck+1 = f(xk) + νk + θk − δk+1 [f(xk) + νk + θk − f(xk+1)]

we have

δk+1 [f(xk) + νk + θk − f(xk+1)] = (f(xk) + νk + θk)− (f(xk+1) + νk+1)) .

Then, summing up the above equalities for k = 0, . . . , N and using f(xN+1) ≥ 0 and
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∑+∞
k=0 θk ≤ θ, we obtain

N∑
k=0

δk+1 [f(xk) + νk + θk − f(xk+1)] ≤
N∑
k=0

f(xk)− f(xk+1) +
N∑
k=0

θk

+
N∑
k=0

νk − νk+1

= f(x0)− f(xN+1) +
N∑
k=0

θk + ν0 − νN+1

≤ f(x0) +
+∞∑
k=0

θk

≤ f(x0) + θ. (2.7)

Combining (2.7) and δk+1 ≥ δmin, it follows that

N∑
k=0

νk =
N−1∑
k=0

νk+1 ≤
N−1∑
k=0

(
1− δk+1

δk+1

)
δk+1 [f(xk) + νk + θk − f(xk+1)]

≤
(

1− δmin
δmin

)N−1∑
k=0

δk+1 [f(xk) + νk + θk − f(xk+1)]

≤
(

1− δmin
δmin

)
(f(x0) + θ) .

Because N ≥ 0 is arbitrary, we conclude that
+∞∑
k=0

νk ≤
(

1− δmin
δmin

)
(f(x0) + θ).

By Lemma 2.1, Algorithm 2 is a particular case of Algorithm 1 with {νk} satisfying

A2. Combining this fact with Theorem 1.1 and Remark 1.4 we obtain the following result.

Theorem 2.1. Suppose that A1 holds. If A3 holds for ν given in (2.6) then, given ε > 0,

Algoritm 2 needs at most O(| log(ε)|ε−2) evaluations of f( · ) to generate the first xk such

that ψ(xk) ≤ ε.
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Chapter 3

Illustrative Numerical Results

In order to investigate the numerical performance of Algorithms 1 and 2, we performed

some numerical numerical experiments comparing the following four MATLAB codes:

• DF-SANE: the nonmonotone algorithm in [8] that corresponds to Algorithm 1

with θk =
‖F (x0)‖
(1 + k)2

and

νk = max
0≤j≤m(k)

[f(xk−j)]− f(xk),

where m(0) = 0 and m(k) = min {m(k − 1) + 1, 10}. Note that this method is not

covered by our theory.

• N-DF-SANE: the nonmonotone algorithm in [2] that corresponds to Algorithm 2

with θk =
‖F (x0)‖
(1 + k)2

and

δk+1 =
1

ηkQk + 1
,

where Q0 = 1, Qk+1 = ηkQk + 1 and ηk = 0.85.

• NM1: Algorithm 2 with θk =
‖F (x0)‖
(1 + k)2

and

δk+1 = 10−3.

This choice of δk+1 is inspired by [3]

• NM2: Algorithm 2 with θk = 0.8(k+1)(k + 1)8‖F (x0)‖2 and

δk+1 = max

{
10−3,

‖F (xk)‖2

‖F (xk)‖2 + 1

}
.
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In all implementations we consider parameters σmin = 10−1, σmax = 1010, σ0 = 1, β = 0.5

and ρ = 10−4. The spectral stepsize σk is computed as in [8]. Specifically, let

σ̃k =
〈sk, sk〉
〈sk, yk〉

,

where sk = xk − xk−1 and yk = F (xk) − F (xk−1). We set σk = σ̃k whenever |σ̃k| ∈
[σmin, σmax]. Otherwise, we set

σk =


1, if ‖F (xk)‖ > 1,

‖F (xk)‖−1, if 10−5 ≤ ‖F (xk)‖ ≤ 1,

105, if ‖F (xk)‖ < 10−5.

The codes were applied to a set of 30 nonconvex test problems of unconstrained mini-

mization [12], most of them highly nonlinear. In our tests, we applied the codes to find

zeros of the gradients of these problems. We used the stopping rules

‖F (xk)‖2

‖F (x0)‖2

≤ ε, ε = 10−4,

and

k = kmax ≡ 2000.

Table 3.1 shows the number of function evaluations required by the codes for solving

each test problem. An entry “F” indicates that the maximum number of 2000 iterations

was reached. Table 3.2 contains a summary with the number of problems solved by each

code and the number of problems in which each code was strictly better than the others

in terms of function evaluations. As we can see, NM1 and NM2 (the new variants of

N-DF-SANE covered by our theory) outperformed N-DF-SANE and DF-SANE.

For a complementary assessment of the codes, we also used the data profiles proposed

in [13]. The convergence test for the codes is:

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL), (3.1)

where τ > 0 is a tolerance, x0 is the starting point for the problem, and fL is computed for

each problem as the smallest value of f( · ) obtained by any solver within a given number

of function evaluations. Let tp,s be the number of function evaluations required by solver

s to satisfy the above convergence test for problem p. For each solver s we plot the graph

of the corresponding data profile ds( · ) defined by

ds(α) =
number of problems for which tp,s ≤ α

total number of test problems
.

Note that ds(α) is the percentage of problems solved by solver s with α function evalua-
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tions.

Specifically, we considered τ ∈ {10−3, 10−5} and a budget of 1000 function evaluations.

The results in Figure 3.1 confirm the good performance of NM2.

Problem (n,m) DF-SANE N-DF-SANE NM1 NM2

1. Rosenbrock (2,2) 123 F 741 460

2. Freudenstein-Roth (2,2) 339 240 114 69

3. Powell badly scaled (2,2) 56 56 56 56

4. Brown badly scaled (2,3) F F F F

5. Beale (2,3) 42 39 F 57

6. Jennrich-Sampson (2,10) 1 1 1 1

7. Helical valley (3,3) 348 207 76 109

8. Bard (3,15) 127 162 123 31

9. Gaussian (3,15) 7 7 7 9

10. Meyer (3,16) 40 40 40 40

11. Gulf (3,3) 1 1 1 1

12. Box (3,3) 28 27 27 27

13. Powell singular (4,4) 97 81 64 64

14. Wood (4,6) 64 62 62 62

15. Kowalik-Osborne (4,11) 516 442 225 59

16. Brown-Dennis (4,20) 87 94 76 69

17. Osborne 1 (5,33) F F 87 92

18. Biggs EXP6 (6,6) 898 399 333 30

19. Osborne 2 (11,65) F F 1234 97

20. Watson (31,31) F F 253 F

21. Extended Rosen (4,4) 123 F 82 467

22. Extended Powell sing. (4,4) 97 81 64 64

23. Penalty I (6,7) 25 25 25 25

24. Penalty II (5,10) 50 35 50 44

25. Variably dimensioned (10,12) 56 56 56 56

26. Trigonometric (10,10) 57 57 57 57

27. Discrete bound. value (4,4) 38 50 36 37

28. Discrete int. equation (20,20) 7 7 7 7

29. Broyden tridiagonal (20,20) 29 29 29 95

30. Broyden banded (10,10) 38 38 38 41

Table 3.1: Number of function evaluations for the test problems from [12].

Code Succeeded Better than others codes
DF-SANE 26 1

N-DF-SANE 24 2
NM1 28 5
NM2 28 6

Table 3.2: Number of problems solved by each code and the number of problems in which
each code was strictly better than the others in terms of function evaluations.
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Figure 3.1: Data Profile, with tolerance τ = 10−3 and τ = 10−5
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Conclusion

In this dissertation we studied the worst-case complexity of a class of derivative-free

nonmonotone methods for nonlinear equations that includes the N-DF-SANE method [2].

For this class of methods, we proved that if the Jacobian of the mapping F ( · ) is Lipschitz

continuous, the methods take at most O (ε−2) iterations to generate xk such that ψ(xk) ≤
ε, where ψ( · ) is a stationarity measure for the merit function f(x) = (1/2)‖F (x)‖2

2.

From this iteration-complexity bound we obtained a lim-type global complexity result

and also an evaluation-complexity bound of O (| log(ε)|ε−2). In our preliminary numerical

experiments, the implementation of a new variant of N-DF-SANE (referred to as NM2)

outperformed N-DF-SANE and also DF-SANE [8] on a subset of 30 problems from the

Moré-Garbow-Hillstrom collection [12]. As a future work, we plan to study the worst-

case complexity of the same class of methods applied to the problem of finding zeros of

strongly monotone mappings. In this case, an improved evaluation-complexity bound of

O (| log(ε)|) is expected.
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