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RESUMO

O objetivo deste trabalho é desenvolver um novo algoritmo para a solucao de equacoes
diferenciais parciais que modelam problemas do tipo Interacao Fluido-Estrutura. Apre-
sentamos, inicialmente, como essas equacoes sao obtidas, a partir da versao das equacoes
de Navier-Stokes em sua formulagao Lagrangeana-Euleriana Arbitraria, acoplada a uma
estrutura hiperelastica genérica. Revisamos, como motivacao para nosso método, alguns
métodos de Elementos Finitos da literatura desenvolvidos para estes sistemas de equacoes,
enfatizando sua classificagao em métodos particionados e monoliticos. Nosso método é en-
tao apresentado como um meio-termo entre essas duas classes. Descrevemos duas versoes
para ele, dependendo das condi¢oes de contorno que consideramos no preditor monolitico:
condi¢oes de Dirichlet constantes ou dependentes do tempo. Por fim, reportamos alguns
resultados numéricos, de modo a comparar nosso método com condigoes constantes de

Dirichlet com um método monolitico e um método particionado.

Palavras-chave: Interacao fluido-estrutura. Formulagao Lagrangeana-Euleriana Arbi-

traria. Método de Elementos Finitos. Preditor monolitico.



ABSTRACT

In this work, we develop a new algorithm for the solution of the systems of partial dif-
ferential equations that model Fluid-Structure Interaction problems. We first present
how these equations are obtained, through an Arbitrary Lagrangian-Eulerian version of
the Navier-Stokes equations, coupled with a generic hyperelastic structure. We then re-
view some Finite Element methods already available to solve such system of equations,
emphasizing the rough classification between monolithic and partitioned methods. This
motivates the presentation of our method, which stands somewhat in between those al-
ternatives. Two flavors of our algorithm are described, which depend on the Dirichlet
conditions imposed on the monolithic predictor: one uses constant conditions and the
other uses time-dependent ones. Lastly, we report numerical results that compare our

method with constant Dirichlet conditions with a monolithic and a partitioned method.

Keywords: Fluid-Structure Interaction. Arbitrary Lagrangian-Eulerian formulation. Fi-
nite Element Method. Monolithic predictor.
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1 INTRODUCTION

Fluid-structure interaction (FSI) is the generic name for problems which, as suggested by
its name, consist mainly of a structure and a fluid that depend on each other’s behaviour.
For example, such problems appear in mechanical engineering, such as in aerodynamics of
airplane wings, parachutes and wind turbines (BAZILEVS; TAKIZAWA; TEZDUYAR|
2013). No less relevant are problems in biomedicine, through the modelling and simulation
of haemodynamics, that is, blood flow (FORMAGGIA; QUARTERONI; VENEZIANTI,
2009).

FSI problems and their corresponding systems of partial differential equations possess
no analytical solution up to now, except for in very simplified models. Thus, they usually
require numerical methods, and it was the advance in computer’s processing capability
that propelled the research for this topic. Indeed, while there are foundational articles
dating from the 1970’s, such as [Peskin| (1972), it is from the end of the 00’s that a number
of academic books were published on the subject, such as Formaggia, Quarteroni, and
Veneziani (2009)), Bazilevs, Takizawa, and Tezduyar (2013)) and Richter| (2017)).

The mathematical difficulties start with the fact that we are coupling two active and
challenging areas: the modelling and simulation of solids or structures, and the modelling
and simulation of fluids. What is more, since one phenomenon influences the other, we
are usually faced with the problem of tracking their domains. This already requires one
to take a modelling decision that will influence the numerical methods. For instance, two
different modern tracks of research are that of Immersed Boundary methods, such as in
recent articles from [Kadapa, Dettmer, and Peri¢| (2018)) and Kim, Lee, and Choil (2018)),
and the Arbitrary Eulerian-Lagrangian (ALE) type of methods (RICHTER) 2017). In
this work, we have chosen to work with the latter, for we consider it to be simpler in
approach.

As will be developed in Chapter 3, the ideal method in FSI would be the one which
would allow the use of the finely-tuned methods for structure simulation and fluid simu-
lation as black boxes, and hopefully use them only once for each time step. This has been
shown, both experimentally and analytically, using simplified models, not to always be
feasible. What we have, then, is the choice to either build a new method, and somewhat
lose all the optimization done in the specialized fluid and structure methods, or to use
these specialized methods many times for each time step, in an iterative procedure.

The goal of this dissertation is to propose a new method, perhaps an intermediate solu-
tion between these two options, to both reduce computational time and use the specialized
methods. We would still need a monolithic method, but run in a smaller domain around
the interface, to predict more accurately the values of the variables on the interface, and

then use the specific fluid and structure solutions only once at a time step.
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To achieve such objective, we begin in Chapter 2 with some theory and mathematical
modelling topics, such as function spaces and concepts of continuum mechanics, to then
present Newtonian fluids and elastic structures. We then present the ALE formulation
for fluids, so that we can couple both fluid and structure to give the full FSI problem.

In Chapter 3, we summarize, as hinted above, some developments in monolithic and
partitioned methods for F'SI problems. We also include concepts that have been developed
to analyze these methods, such as the added-mass effect and the Geometric Conservation
Law.

Our method is then introduced in Chapter 4. After a brief presentation, we use a
simple parabolic problem to analyse some of its properties. Two flavours of the method
are given, one using time-dependent and non-constant Dirichlet boundary conditions, and
another with constant Dirichlet conditions.

Finally, we show in Chapter 5 our results from numerical tests in the FSI problem of
an elastic tube filled with a fluid, presented with a constant pressure on one of its openings,
and closed on the other. We have performed tests with the constant Dirichlet conditions
version of our method, using two different domain sizes for our predictor. Additional tests
have checked what happens when we double the pressure condition, and whether refining

the problem’s mesh improves the performance of our predictor.
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2 MODELLING STRATEGY

In this chapter, we gather ideas related to the modelling of a Fluid-Structure Interaction
problem and fix some notations for the following chapters. Nothing here is new, and our

main reference was Formaggia, Quarteroni, and Veneziani (2009, Chap. 3).

2.1 SOME FUNCTION SPACES

Let us quickly define the function spaces we need for the weak formulations of our equa-
tions. This section is just a summary of the detailed presentations from |Adams and
Fournier| (2003) and (Quarteroni and Valli (1994)).

Let ©Q C R? be an open, bounded set. We assume also that 02 is Lipschitz continuous,
that is, it can be locally represented as the graph of a Lipschitz continuous function. These
assumptions allow us to apply Green and Stokes theorems for integrals in (2.

It is convenient to introduce the notation of a multi-index,
d
o= (a,as,...,0q0), 0 €N and o =) a; (2.1)
i=1

This multi-index used to abbreviate the notation of derivatives of functions and distribu-

tions, by

ool

D%p = :
L R R

(2.2)

The set L*(Q) is defined to be the space of Lebesgue-measurable functions u: Q — R
such that [, u?d\ < oo, where ) is the usual Lebesgue measure. It can be shown that

L?(92) is a Hilbert space, with inner product

(u,v) = /qu d\, Yu,v € L*(Q). (2.3)

Let also D(2) be the space of infinitely differentiable functions with compact support

in ). By support of a function u we mean

supp(u) = {x € Q|u(z) # 0}. (2.4)

Its topology is defined in such a way that the convergence of a sequence has the meaning
that {¢;};, ¢; € D(Q) converges to ¢ € D(Q) when

(i) there exists an open set K, such that K C Q, K compact in R? with
supp(¢; — ¢) C K, Vj, and

(ii) limjeeD%¢;(x) = D¢p(x) uniformly on K above Ve,
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and that a linear functional 7 is continuous if, and only if, T(¢;) — T'(¢) when the
convergence as above happens. Its topological dual D’(12) is called the space of distribu-
tions, and the convergence Tj — T means T;(¢) — T(¢) in R for all ¢ € D(Q) (weak-*

topology).
Let L € D'(2) be a distribution and a, a multi-index. The derivative D*L € D'(Q),

in the sense of distributions, is defined as
(D*L,v) = (=1)l*l(L, D*v), Vv € D(Q) (2.5)
The family of Sobolev spaces we shall use are the
H*(Q) = {v e L*(Q)|D* € L*(Q) Va,|a| <k}, (2.6)

with norms and seminorms

[lvllk0 = (Z IIDO‘UII%z(Q)) SUITRS (Z HDavHia(Q)) : (2.7)

|| <K la|=k

They are Hilbert spaces with inner product

(W, V)0 = > (D, D) 2(0). (2.8)
|| <k
When a function depends on space and time, for instance v(t,x), with
(t,x) € Qr = (0,T) x €, we might consider the spaces

T
LP(0,T; H*(Q)) = {v: (0,T) — H*(Q)|v is measurable and / [|o(t)|% qdt < oo} (2.9)
0 2

with norm

1/p

T
el = ([ 100lRatt) 210)

When dealing with partial differential equations, it is important to be able to define
suitable boundary conditions. However, 02 has Lebesgue-measure zero in €2, which means
that imposing that a function u in L?(Q2) or H*(Q) is equal to another on the boundary
might not make sense unless v is continuous. In the general case, the following theorem is
very important to allow for these boundary conditions. It uses H*({2) spaces, with s € R,
which generalise the ones we just defined, through a definition using Fourier transforms.
We shall not define them here, and refer to the references from the beginning of this

section.

Theorem 2.1 (Trace theorem). Let € be a bounded open set of R? with Lipschitz
continuous boundary 02 and let s > 1/2.

1. There exists a unique linear continuous map vo: H*(Q) — H*Y/2(082) such that
Yov = vlaq for each v € H*(Q) N C°(Q).
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2. There exists a linear continuous map Ro: H*~Y/2(09) — H*(2) such that
YRop = ¢ for each p € H*~1/2(90).

The same is true for the trace vs over a Lipschitz continuous subset ¥ of the boundary
o).

The important observation from this theorem is that the functions restricted to 02 or
parts of it have less regularity.

Lastly, we recall a useful theorem.

Theorem 2.2 (Gronwall Lemma). (QUARTERONTI, 2016) Let A € L'(to,T) be a non-
negative function, ¢ a continuous non-negative function in [to, 7], and g a non-negative

constant, such that

t

() < g+ t A(T)p(T)dr, ¥t € [ty, T). (2.11)
Then,
(1) < \/9) +;/t:A<T)dT, Vit € [to, T]. (2.12)

2.2 THE FRAMEWORK OF CONTINUUM MECHANICS

This section is mostly based on |[Formaggia, Quarteroni, and Veneziani (2009) and Gurtin
(1981)), which contain these fundamental theorems and their proofs.

The approach of continuum mechanics is similar to that of thermodynamics, in the
sense that we study macroscopic phenomena on a body B of a certain material. We thus
assume that the functions of study, such as velocity, pressure and traction, are defined on
a continuum. Such assumption is usually called the continuum hypothesis. In this way,
every point in space is treated as a volume element, containing enough molecules for the
study of its macroscopic properties.

The macroscopic setting also allows us to divide the forces acting on the material as
1. body/long range forces f,: like gravity, they act on all elements of the material;

2. contact/short-range forces f,: like traction on boundaries, that act on a surface of

the material.

Its reasoning from physics can be seen at Batchelor| (2000) and [Landau and Lifshitz| (1970).

Lastly, we postulate that contact forces can be described in a unified manner as a
tensor field S: B x R3*3 — R**3, that provides us with the traction T € R? on a point
x of a (fictitious) surface inside B, with normal vector n: T(x) = S(x,n). This is also

known as the Cauchy’s hypothesis.
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We shall now quickly present the basics of continuum mechanics, starting with kine-
matics, i. e., the description of movement, and later dynamics, i. e., the study of what

causes this movement.

2.2.1 Kinematics

To begin the description of movement, we choose a time ¢, usually denoted as ¢y, and use
the position of elements & € R? of the body B at t, as a reference. The set of elements

Q) C R3 is called the reference configuration. Thus,
Q= {% € R?; % is the position in space of a material element of B at time #;}.

We can then define a time-dependent function, from time t, until a time ¢, called the
motion function, : QO x [to, 1] — RY, that describes the movement of the material elements
in time, from the reference Q. Hence, for fixed ¢, we may denote as (%) = (%, t) the
deformation function at time t that indicates where the material element X was moved to
in time ¢. Both physics and analysis impose different requirements for ¢. For instance,
the simplest requirement is that detVgy; > 0 for all ¢, since detVgy; = 0 would mean
that the material would locally vanish and detV4p; < 0 implies a change in orientation
of the body.

Once we have defined the deformation function, we can define the displacement vector
field 77: Q x [to, {] — R,

N 1) = (X, 1) - X (2.13)

Remark. While it is more logical to define first the deformation function and then the
displacement vector using ¢, it is the opposite that happens in numerical methods. We
calculate 7 and use it to calculate ¢ when necessary.

The velocity of a material element X in time is straightforward,

. ol

v (2.14)

The description of change in lengths, areas and volumes is given by the deformation

gradient at a time t,
F(%,1) = Vapr. (2.15)

It is also convenient to denote it as f‘t, when we fix a time £. We also consider its Jacobian,

J, = det(F,), (2.16)

~

which can also be denoted as J(%,t) = J,.



Chapter 2. Modelling strategy 16

Calculations, detailed in the references we gave in the beginning of the chapter, lead

to the relationship between differentials,

||dx|| = \/dXTFTF,d%. (2.17)

Therefore, it might be interesting to define a tensor field
C, = FI'F,, (2.18)

called the right Cauchy-Green tensor of the deformation.
As expected, J, is crucial for changes of variables in integrals, as for any V' C Q and
fixed t,

vol(V) = /V dx = /‘A/ft(fc)dfc. (2.19)

Also, by the chain rule, we can push-forward any (regular enough) f : Q0 — R into
f:Q =R, by f(z) = fou(x) and Vf = Vi, Vf.

Another important tensor field is the strain rate tensor

1 (Ou; Ou,
D(u);; == [ — 1, 2.20
or, written in compact form,
1
D(u) = 5(Vu + (Vu)®). (2.21)
Lastly, we define the Green-Lagrange Strain tensor,
PO 1 R | T~
E=_ (F"F 1) = 5 (Vi + (Vai))") + o (Vi) " Vs, (2.22)

The transformation below makes it easier to “transfer” tensors from the reference to

the 2, configuration.

Definition 2.3. Let o: 0, — R**? be a smooth tensor field on ,. Its first Piola
transform is the tensor field IT: Q — R3*3 defined as

(%) = J(%)o(o(%)F; " (%) (2.23)

We may recover o from II by the formula

A

o (x) = J; (¢~ ()L™ (x))F] (97! (x))- (2.24)

Its advantage is the

Proposition 2.4. (FORMAGGIA; QUARTERONI; VENEZIANI, 2009) Under suffi-

cient regularity of o,

divIl = Jdive. (2.25)
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Corollary 2.5.(FORMAGGIA; QUARTERONT; VENEZIANT, 2009) For V C €, suffi-

ciently regular,

/A IIh d4 = / ondy. (2.26)
ov ov

This comes in handy when we want to describe the behaviour of the material. Instead
of observing what one material element does in time, we observe which elements pass
through a point in space. Those points of view are called Lagrangian and Eulerian,
respectively.

Another convenient definition is the material time derivative,

Definition 2.6. Let ¢: Q(t) — R be a scalar field. Its material time derivative is defined

as

Da, y_ 01

Dt ("t) - E('vt) © 9015_1' (2.27)

We now recall some useful properties in tensor analysis.

Proposition 2.7. (GURTIN| 1981, p. 30) Let ¥, v, w and S be smooth fields with 1

scalar valued, v and w vector valued, and S tensor valued. Then
1. V(yv) =¢Vv +v® Vi,
2. div(yv) = divv + v - Vi,
3. V(v-w) = (Vw)Tv+ (Vv)'w;
4. div(1S) = ¢ divS 4 SV1).

Proposition 2.8 (Reynolds transport theorem). (GURTIN] 1981} p. 78) Let V (t) C
be a material domain, that is, an open subset with a boundary with enough regularity,
and f:€); — R a continuously differentiable field. Then

d _ Df | .. - of
dt/V(t) fdx = /V(t) <Dt + fdlvu> dx = /V(t) <6t +d1v(fu)> dx. (2.28)

2.2.2  Dynamics

We now come to the study of dynamics. The basic tool we need is that of a conservation
law, taken from Newtonian mechanics. In particular, we use explicitly two: (RICHTER)
2017, p. 24)
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1. Conservation of mass. The mass of a part of the body is independent of deformation

in time.

2. Conservation of linear momentum. It is the second Newton’s Law: the linear mo-

mentum on a part of the body equals the sum of forces acting on it.

The conservation of angular momentum is used in constitutive theories, and the con-
servation of energy is considered when we need an extra equation. This happens, for

instance, when a fluid is compressible.

Proposition 2.9. Assuming conservation of mass, we have that

op P 0,5y . 5
2t V-(pu) =0in €, and &(Jp) =0, in Q. (2.29)

Proof. The conservation of mass states that, during the movement, for any subset of
materials V C €0, its mass must be constant in time. Thus, mass(V;) = cte, Vt. Using the

Reynolds transport theorem,

d dp
0= 5 | pix= /V (81& TV <pu)> dx. (2.30)
Hence,
/ <8p +V- (pu)) dx = 0. (2.31)
v, \ Ot

Using a localization argument, we find that

ZQJ + V- (pu) =0, in . (2.32)

We may also write this equation in the reference domain, using J. We get

d d [~ a(Jp)
0:7/ d :—/AJ dA:/AidA. 2.33
dtV(t)pX at Jo P T o (2:33)
Therefore,
0

5 (I =0.///] (2.34)

Proposition 2.10. Assuming conservation of linear momentum, we have that

0
pafltl + p(u- V)u — dive = pf, on €, (2.35)
or
_PH . e A
Jp — Jdive = Jpf, on Q. (2.36)

o
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Proof. By writing the Second Newton’s Law,

/p dV = / dem+/ o -ndS (2.37)

- / pF,dV, + / dive dV (2.38)
v V()

From it, we get the two possible forms for the continuity of linear momentum. The

conservative one reads

d(pu)

ot

and the other is

+div(pu®@u — o) = pf, (2.39)

s 2y p(u-V)u—dive = pf. (2.40)

We can also find this equation in the reference domain, using change of variables in

the integrals,

on o ~ ~
/ 7 ndA /A Jdive d% = /A T5t dg. (2.41)
dt v v
Thus,
PN o~
J e 9 — Jdive = Jpt. //// (2.42)

However, diver is unsatisfactory, so it is replaced by div;(ﬁ, where II is the Piola
transform of o. This last tensor is called first Piola-Kirchhoff tensor (FORMAGGIA;
QUARTERONI; VENEZIANI, [2009). Since it is not symmetric, we define a second
Piola-Kirchhoff tensor, by s = f‘_lﬁ, which is symmetric and thus more suitable for
discussions on constitutive rules.

Finally, we still need the internal description of dynamics, given by constitutive rela-

tions. They are what indicates how o is connected to i or u

2.3 INCOMPRESSIBLE NEWTONIAN FLUIDS

We’ll describe only incompressible Newtonian fluids. Therefore, we do not need energy-
related equations and the system is somewhat simplified. We take the general system

from the previous section and add the following equations. The first is its constitutive

relation (BATCHELOR) 2000)
o = —PI+2u(D(u)), in €y, (2.43)

with viscosity coefficient 1, and the second is the incompressibility condition

dp
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The system of equation for the fluid can be written as

Ju

“— +p(u-V)u+ VP —2div(uD(u)) = pf

pr Tru-Viu iv(uD(u)) = p Q. (2.45)
V-u=0

We must then prescribe conditions to guarantee the existence and uniqueness of a
solution. We require an initial condition for the velocity, u(x,ty) = up(x), Vx € Q.
Moreover, we may divide the boundary of €, into 02, = I'y UT'p U T'g, to apply some

boundary conditions. They can be the Neumann condition (applied stresses),

o-n=hon 'y, (2.46)
the Dirichlet condition (prescribed velocity)

u=gonlp, (2.47)
or the Robin condition

au+yon =0 on I'g, (2.48)

where o and ~ are chosen coeficients.

Since our example will have a Neumann condition, we do not need to worry about
additional conditions for the uniqueness of the solution, such as requiring that the average
pressure is equal to zero (QUARTERONI; VALLI, [1994)).

The weak formulation for the fluid problem will be discussed ahead.

2.4 ISOTROPIC STRUCTURES

The class of structures in this work are restricted to isotropic elastic or hyperelastic

materials. They can be defined by constraints to their constitutive relations, as below.

Definition 2.11. An isotropic structure is one in which its response to deformation n
is independent of the direction of stress o. It is called homogeneous if the response is

independent of x.

Definition 2.12. An elastic material is one in which the stress o depends on the defor-

mation, but not on time.

Definition 2.13. A hyperelastic material is one in which the second Piola-Kirchhoff
tensor 3 is written as the derivative of another function W: R33 — R, called the

density of elastic energy.

PN oW - ow
(E) = aiﬁ(E)’ Yij = % (2.49)
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In this case, the modelling of the structure is given by W. For instance, a classical
material is the Saint-Venant-Kirchhoff model,

~ L ~ ~
W(E) = ?l(trE)Q + Lytr B2, (2.50)

in which L; and L, have an experimental meaning (LANDAU; LIFSHITZ, [1970).
Deciding adequate models for constitutive relations is a research field in itself. Many

times, we can simplify the equations by assuming that the displacement is small and

around an equilibrium (unstressed) configuration. In this way, it is possible to talk about

a linear elasticity problem.

2.4.1 Weak formulation

We first define the space of test functions we are working with,
V=[H (Q)P ={ve[H'(QP:v=0o0nTp} (2.51)

The Dirichlet condition is treated through a lifting technique. We consider the lifting
of g.p € H'2(Q,) to G € H'(Q,). Then, a weak formulation for our problem can be: we
want to find, for each t > 0, f(t) = (t) + G(t), with 7(¢) € V such that, for all v € V,

L7050 5 4 a0, %) = F(9) 2:52)
s0== - V+a(n,v)=FV), )
oo L

a(ﬁ,@):/Aﬁ:\AfdQ, F(e):/j-vd9+ [ h-va, (2.53)
Q Q I'n
where p, o = J, p and T: S is the inner product in the tensor field space.

The regularity of the solid problem is of major importance for the FSI problem, to
guarantee the well-posedness of the coupling conditions. Such conditions require the
existence of trace spaces on the boundary for the velocity of the structure. Since
neH 1(QS), its derivative is well-defined, but it may not be regular enough — H 1(Q),
for instance — for its trace to exist on the interface I' (RICHTER), 2017).

2.5 ALE COUPLING

We describe here one approach towards the coupling of the equations. The main difficulty
is how to describe the movement of the domains, with the coupling conditions. For
example, the time discretization might not make sense when one describes function spaces
that are different in time. How would one interpret u(t + h) — u(t) if they are in different
spaces (RICHTER] [2017)7 One way to do this is by the Arbitrary Lagrangian-Eulerian
(ALE) approach, which we now describe.
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2.5.1 ALE mapping

The ALE approach is conceptually simple, and was first presented in [Hirt, Amsden, and
Cook! (1974). We define a new time-dependent domain w;, with reference to a domain
wyg. Usually, wy = Q 7. In this work, we consider this to be the case. Such new domain
is described by a new variable in our system of PDEs, called the fluid domain’s velocity
w: Q — R3.

The coupling between the solid and fluid on an interface I'; = Q{ N gives us the

value of w on I';, that is,
w=u’ onl}. (2.54)

From there, we must choose how to extend this value for the entire domain w,. What
is crucial here is w’s regularity. Indeed, as summarised in (RICHTER, [2017)), the lack
of appropriate regularity for w will mean that our FSI equations with ALE will not be
equivalent to the original problem. Corners in the domain are also very problematic when
it comes to such regularity.

That being said, there are two popular ways to extend the interface value to the entire
domain. The first is to use a harmonic extension, and the second is a fictitious elasticity
problem. A third, safer but rather unfeasible computationally, is the biharmonic problem.
Further comparisons are done in [Richter| (2017)).

One of the disadvantages of the ALE approach is when the change in domain results
in topological changes as well. When that happens, the ALE mapping will no longer be
continuous. For instance, when an immersed ball in a water tank, treated on the fluid
domain as a hole, touches the tank’s wall, we no longer have a hole in the domain, and
its fundamental group changes.

The other disadvantage of the ALE approach is the insertion of another convective
term, p(w - V)u, in the fluid equation. This adds, then, added another nonlinearity to
the problem.

The notation for functions defined on the ALE domain is the tilde. Thus, (X,t) is
the displacement for the domain point X € Q, at time ¢. It is given by a new motion
function A: Q x Rt — R?. The velocity of this motion is calculated by

0A
T o

Analogous to the material derivative is the definition of an ALE derivative.

(%, 1)

(%.1). (2.55)

Definition 2.14. Let ¢: w; — R. Its ALE time-derivative is defined as
dq d -~
— = — X,t),t). 2.56
ot a0 (2.56)

It also leads to a transport formula (FORMAGGIA; QUARTERONI; VENEZIANI,
2009).
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Proposition 2.15 (ALE transport formula).

d 0 of
7 fd / <8t\Af + fdlvvv> dx = /wo(t) (81& + d1v(fw)> dx (2.57)

Using this theorem, the Navier-Stokes system becomes

Ju .
pa—tu—i— pllu—w) - Viu+ VP —2div(uD(u)) = pf, (2.58)
divu = 0.

As previously noted, the point of using the ALE technique is to be able to enforce
that the fluid domain, now coinciding with w;, has the same velocity in its interface as the
velocity of the solid. This is usually called a geometric coupling condition, and it means
that

~ ~

AR) = 3,(%,0), on T or BER) =n(R), onT. (2.59)
The physical coupling conditions are the continuity of velocity on the interface,
ur(x) =w(x) onl\(t), (2.60)
and the continuity of stress,
of-n=o0,-nonl\(t). (2.61)

Considering the initial values as zero, that is, that the system is initially at rest, and
considering the following tube domain, with an axial cut, with the gray region as the

solid, and the white interior region as the fluid.

FIGURE 1 - Domain for the FSI problem, axial cut

~

FS,N
Fs,D Fs,D

=

~ ~

Lsp Lyn

SOURCE: The author (2020).

The full system, with fst =0 and fS’D = 0, becomes

Ouy . .
Pr o Ll g+ ps(uy —w) - Vuy —dives(uy;, P) =0 in Q(t)

diVllf =0 in Qf(t) (262)
O'f(llf,P) :gf,N on Ff,N
u = hf,D on FﬁD
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9*n PN ~
Ps.0 M5 _ divg(FsX) =0 in €
Ot?
n,=0 on I'yp (2.63)
f‘siﬁs =0 on f’s,N
o TR
ny = EXt("75|f)a Qf(t) = A(Qf,t); W = v m Qf
uf=w on [I(¢) (2.64)

ocr-n=0,-n on I(t)

The coupling approach and above and its system of equations were taken from |For-
maggia, Quarteroni, and Veneziani (2009). Another possible approach is given in Tallec
and Mouro| (2001)), in which the equations of fluid and structure are deduced as two main
conservation equations in ALE form and the constitutive equations separate the domain
into fluid and structure. The trial spaces are treated differently, and the end result is a

Dirichlet-Neumann approach.

2.5.2 Weak formulation

We may now summarise the procedure to find a weak formulation of the coupled problem,
from [Formaggia, Quarteroni, and Veneziani (2009). To avoid the extra notation needed
for the lifting of Dirichlet conditions, they are assumed to be zero.

As test functions for the fluid, we use time-independent functions defined on the
reference configurations, v : Q s — R that vanishes on I'y p and §: Q 7 — R, for the first
and second equations, respectively.

We also use their Eulerian counterparts, v(x,t) = v,(A; 1(x)) and q(x, t) = §(A; *(x)).

We use the many properties from tensor analysis.

ach
S vpdx+ | —w) - Vuy vy d
/Qf(t) Zarn |7 vrdx o, pr(uy —w) - Vuy - vydx

+ o(us, P) : Vvpdx —/
r

gsn - vydy 2.65
0 (1) PN (2.65)

LN

— o/(ur, P)ny-v d7+/ gdivardx =0
- s(up, P)ng - vy 00 f

For the solid, we use vy: QS — RR? that vanishes on fs, D-

07 I o
/A ﬁsoﬂ-vsdfw/A FS V,;\?Sd&—/AFSEﬁS-\Ade?:O (2.66)
Q.  Ot? Qs T
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There are only two steps left to be done: we commute the derivative with the integral

in the first equation,
an =~ 8ﬁf
Sl qevrdx = [ ppTi St vy a8 2.67
/Qf(t)pf ot G vrdx ﬁfpf Agp VIOE (2.67)
d = ~ _—
== % A\f J_prﬁf . i\/f dx — /ﬁf JgpfdiVWﬁf . i\/f dx (268)
d

pfuf'vfdx—/ ()pfdikuf~vfdx (2.69)
Q

T dt Q1) £t

The second step is to change the integral from I'(¢) to f, which requires a special
property called Nanson’s formula, described in the reference. We skip such step and

report its result,
P, -vd :/j~ a;, PYETh, v, d7. 2.70
/F(t)a'f<uf g vpdy= [ Jzo(uy, PP 0y - Vydy (2.70)

Finally, the whole weak formulation reads: find ti;: Qf x R* — R? P: Oy x R* — R,
;0 QxR — R®and 7: QxR — R such that, for all (v, q) € [H ()] x L2(2)
~ ~ fYD
and v, € [H%S,D(QS)P with v; = v, on T,

d
— Ur-ved +/ ur — -Vur-ved
pn /Qf(t)Pf Frvpdx Qf(t)Pf( F—w) Frvpdx

— prdivwuy - vydx + o(up, P): Vvypdx —/
r

gsN - vydy
Q1) 9, (1) w o

N

— grN -V dw—i—/ gdivuydx (2.71)
o o) !

-~ aQﬁS oS A s ~ A
+/A Ps,0 ‘Vst+/A F. Y :Viv.dk =0
Q. 0t? Q.
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3 A REVIEW OF SOME NUMERICAL METHODS FOR FSI

3.1 A SKETCH OF THE FINITE ELEMENT APPROACH

The methods we discuss in this work are all based on the approximation of partial differ-
ential equations using Finite Element Methods (FEM). We shall introduce its main ideas
very briefly, and refer to the references |Quarteroni and Valli (1994) and Ciarlet (2002) for
details and this topics’ many nuances.

The starting point of the FEM approach is usually the weak formulation of a problem,
as developed in the first chapter. For illustration purposes, we denote a generic weak

formulation for a stationary PDE on a domain 2 by
find v € V such that a(v,w) = f(w), Yw € W.

When the PDE is linear, then a: V x W — R is a bilinear form and f: W — R is also
linear. This is not the case if the PDE is non-linear, as in more realistic models for fluids
and structures.

A Galerkin approzimation is applied on the equation above: we choose two families
{Vi,}n and {W},},, of finite dimensional spaces that are usually required to satisfy Vj, C V,
Wy, € W, and dimV},, = dimW,,, Vh. The idea is that, as h — 0, the finite-dimensional
space V}, gets also closer to V. The rigorous version of this statement can be found in
Quarteroni and Valli (1994)).

Once we have these finite dimensional spaces, we choose convenient bases for both,
{w i, for Vi and {p;}7, for W),. Then, we write v, € V}, as

vi(x) = vipi(x), Vx € Q (3.1)
i=1
or, if the problem is time dependent,
vi(x,t) =D v(t)pi(x), Vx € Q. (3.2)
i=1

We replace v, written in the basis, as above, on the weak formulation, along with the

basis of W), to obtain a finite-dimensional system
S vsalgny) = Fey), for j € {1,2,...,m}, (3.3)
i=1

if no time is involved. If the problem is time dependent, the result is a system of ODEs.
This process is then called semi-discretisation of the system, and the derivatives act on
the coefficients v;(t). It is then necessary to choose a time discretisation procedure.
Finally, linear PDEs result in linear systems. Nonlinear problems will lead to nonlinear
systems that can be solved either by using Newton methods or other optimisation-like

procedures.
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The finite element method provides a framework to construct the families V},, W), and
its bases. The first thing to do is to find a triangulation Tj, for the domain 2. For example,

when € is a polygonal domain,

0= | K, (3.4)
KeTy,

where K € T, have disjoint interiors, and their intersection must be coincide either with
one of their nodes or edge. Although it is called a triangulation, K can be all triangular
(and similar polyhedrons in higher dimension) or all parallelepipeds (CIARLET) 2002).
The parameter h can be chosen in many ways. It can either be the largest diameter of
the circle inscribed or circumscribed around the polygons K, or a simple maximum of
K’s edge sizes. We shall enumerate the nodes in 7, and denote them by d;.

On the triangular case, a simple and usual family of spaces defined using 7}, is
VE = {u, € COQ)|vp| K € Py, VK € Ty}, (3.5)

with P, the space of polynomials of degree less than or equal to k. A convenient basis

for V¥ is the Lagrangian basis {,};, defined as
sz(d]) :52']'7 VZ,] € {1,2,...,777,}. (36)

Another important topic is how to deal with the Dirichlet boundary conditions, say
v = g on d)p. We might “interpolate” g on the triangulated version of 9€)p, by enforcing
that v; = g(d;) on these nodes. Another approach is the Nitzche’s approach, which
enforces the Dirichlet condition as a penalisation of constant 1 on the weak formulation.

This amounts to rewriting the equation on the weak formulation as
alv,w)+p [ (v - g)dS = [(w) (3.7)
op

3.2 OVERVIEW OF THE METHODS

General books about numerical methods for FSI problems include the already mentioned
Formaggia, Quarteroni, and Veneziani (2009) and [Richter| (2017)), although the latter
focuses on monolithic methods. A survey of partitioned methods is Hou, Wang, and
Layton| (2012)), which also includes immersed-boudary versions.

The classification of numerical methods for FSI problems using the ALE formulation,
is still not standard. What may be called a monolithic method by one author might not
be called as such by another author. Still, there are two popular ways of classifying these
methods:

1. Partitioned versus monolithic

2. Loosely coupled versus strongly coupled
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Partitioned methods are usually the ones in which there is an explicit separation
between the fluid solver and the structure solver, and both might be used as black bozes
in a staggered fashion, that is, one after the other in an attempt to find the solution to
the problem. On the other hand, custom-made algorithms that attempt to solve the FSI

problem in unity as a single, big system are called monolithic methods.

TABLE 1 - Partitioned methods

Advantages Problems
Can use the preexisting methods | Satisfying the coupling
Less use of computer memory Avoiding the Added-mass effect

SOURCE: The author (2020).

TABLE 2 - Monolithic methods

Advantages Problems
Easy to enforce strong coupling | Big system of nonlinear equations
Less stability issues Needs new, expensive methods

SOURCE: The author (2020).

The classification using the coupling condition indicates how precisely that condition
is enforced at each time step. Loosely coupled algorithms usually solve the solid and
fluid problems only once, using some prediction as well. Strongly coupled methods usu-
ally involve iterative methods which solve the subproblems many times to guarantee a
better approximation of the coupling condition at a time step and are, thus, more com-
putationally expensive. However, strongly coupled partitioned methods are known to be
susceptible to a phenomenon called added-mass effect (check Section 3.5.1), which may
render the method unconditionally unstable even if one reduces the time step.

The possibility to use loosely coupled algorithms depends on the properties of the
FSI problem we want to solve. Haemodynamic problems have shown to have issues with
stability, and thus loosely-coupled methods are avoided there (FORMAGGIA; QUAR-
TERONI; VENEZIANI| 2009). It is believed, as we shall discuss in the last section of
this chapter, that the issue has to do with the closeness of density of the fluid and solid
for this type of problem.

We also indicate the possibility to classify methods by how each field is discretised
in time, that is, whether they are done implicitly or explicitly. For instance, [Fernandez
and Mullaert| (2015)) explore the possibility of using extrapolations to linearise parts of
the algorithms, and so does |Crosetto| (2011)), which explores the extrapolation on the
convective terms of the fluid on the method he called geometry-convective explicit.

It is useful to create a special notation for the fluid and structure solvers used as

black-boxes, and there are at least three popular descriptions for them.

1. The three-field formulation
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This approach, popular to describe some monolithic methods (CROSETTO, 2011),
separates the entire weak formulation from the previous chapter into F,S and G, with
the equations as below.

a. Fluid field Using the solid displacement 1, and ALE domain displacement 7, we
find uy and P for the fluid,

F<uf7paﬁsa’?’f) = 0. (38)
b. Solid field Using the fluid velocity uy, find the solid displacement 7,

S(,.up) = 0. (3.9)
c. ALE field Using 7, find 7,

G(ng,n,) =0. (3.10)

If needed (for instance, in nonconforming grids), the balance of traction on the interface

might be included into one of the equations above.

2. The Lagrange multiplier approach.

This approach is also used in monolithic methods, as will be explained in Section 3.4.
We add another variable A to our problem, either the displacement or interface on the
border.

a. I(uy, P,m;,M,) = 0 corresponds to the term on the weak formulation that enforces
the interface traction balance, if A is the displacement, or the continuity of velocity, if A
represents the traction.

b . F(uy, P,n;,A) = 0 corresponds to the fluid and ALE extension terms.

c. S(n,,A) =0 corresponds to the solid terms.

3. The Domain Decomposition approach

The operators we shall define are called Dirichlet-to-Neumann operators, that have a
special meaning in the theory of domain decomposition methods. The idea behind these
operators is that a solver (fluid or solid) receives a boundary displacement A, then it is
run to get a solution and finally returns the interface traction from that solution.

Sy is defined as a numerical extension operator that solves the fluid problem and
calculation of its ALE domain with the given Dirichlet condition on I' and returns its
traction on that interface,

- . . A—0"s
St A find (u,p, A;) for the fluid-ALE problem with ulp, = TF
= (os(u,p) - n)lr,

Its “inverse” S;l is the Neumann-Dirichlet operator, that takes the traction o on the
interface to solve the fluid+ALE problem and returns the displacement of the solution on

the interface.
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We define the same for the solid,
Ss: A+ find 7 for the structure problem with 9z = A +— a,(n) - n,

and its Neumann-Dirichlet operator S;!.

3.3 PARTITIONED METHODS

In [Tallec and Mouro| (2001, foundations are laid to the framework that is now used in
partitioned methods. Firstly, the problem is modelled in full as in the previous chapter
and divided, as a weak formulation, into the three fields formulation. The main issue is
to distribute the coupling conditions for these problems. The approach of choice was the
Dirichlet-Neumann method, in which the continuity of the velocity is enforced on the fluid
subproblem as a Dirichlet condition and the traction problem on the solid as a Neumann

condition. A similar method is described in Dettmer and Peri¢| (2005).

3.3.1 Strongly coupled

Deparis, Discacciati, and Quarteroni| (2006|) summarised the Dirichlet-Neumann strategies

using the Domain Decomposition notation.

1. Fized point methods
This is the most popular approach. It can be abstractly written as to find X such that

S =S (\) = A (3.11)

S

In practice, a typical loop, at iteration k, is done as

(i) % = S¢(A*"): we use the fluid solver with the Dirichlet condition A* on the interface

(ii) X* = S71(—o*): we feed that result into the structure solver with Neumann condi-

tion on the interface
(iif) A* = AP+ wk(xk — AF): relaxation step
(iv) Check for convergence

One can use Aitken-like choices for w* (FORMAGGIA; QUARTERONI; VENEZIANI,
2009))

2. Newton methods
First, we write the problem as to find A such that ®(\) = 0, where

D(N) = S, (=Sp(N) — A (3.12)

s
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Then, we use D(A\) = Jacobian matrix of (S;'(—=S¢()\))). The first two steps of a

typical iteration k are the same as in the previous method
(i) o = Sp(A")
(i) X' = 5;"(~a")
(iii) (D(AF) — D)k = —(X" — A%): we must build D(A*) and solve the linear system
(iv) M= AP 4wk
(v) Check for convergence

The tricky and expensive part is indeed the calculation of the Jacobian matrix. While
it is possible to find the exact formulas for it when we build the fluid and structure
algorithms, the point of partitioned methods is also the use of black-box solvers. When
that is the case, we may have no access to the solvers’ internals or the methods are too
sophisticated. The calculation of the Jacobian is then likely to be done by finite difference
approximations (KUTTLER; WALL, 2008).

3. Steklov-Poincaré methods
We rewrite S;H(—Sr(A)) = A as

Ss(A) + S(A) =0. (3.13)

The typical iteration k is

(i) g = —P(o%h + ob)
<1V) Ak-ﬁ-l _ )\k —|—wkl,llk

The operator P is seen as a preconditioner in the theory of domain decomposition
methods. One possible family of preconditioners is, for iterations k, coefficients o/}’ and

o and linearisations S%(-) and S,(-) for the operators Sy(-) and S,(-),
Pyt = akSi(A) T oS AR (3.14)
The study of preconditioners can be seen in Deparis, Discacciati, and Quarteroni (2006)).

Other possibilities beyond the Dirichlet-Neumann approach have also been tested for
partitioned schemes. Later studies summarise some of these possibilities into the Robin-
Robin methods (FERNANDEZ: MULLAERT, 2015; BADIA; NOBILE; VERGARA,
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2008). For example, Badia, Nobile, and Vergara, (2008)) develop a method in which the
ALE part is extrapolated, with predicted interface at time t" denoted as I'*. Two pa-
rameters control the Robin conditions, ay and a, in which oy # —a, and oy, a3 > 0. A

typical iteration k£ + 1 would be

(i) solve the fluid problem with Robin condition on I'* as

E k-1
% — ok n,, (3.15)

Oéfl,l’;chl + O'I;chl . nf = Qy

k+1

(ii) use the ulffl and 07" found above to solve the structure problem with Robin

condition on I'* as

Qs Qs
EHL L ghtlin, =

k k+1 k+1
Ktns = Atns +aui™ — o 1y (3.16)

(iii) Check for convergence

Depending on «a, and ay, many methods can be recovered. For example, for a very
large oy and with a; = 0, we recover a Dirichlet-Neumann method. The studies in |Badia,
Nobile, and Vergara| (2008) are done using a structure as a surface (or thin wall) and
using a linearised fluid. Then, those authors were able to show that the structure can,
in a way, be “embedded” into the fluid using the Robin condition, so that the interface
values would converge in one iteration. Similarly, with the added-mass operator (check
Section 3.5.1), they were able to describe the fluid problem inside the Robin condition
of the solid to obtain the same one-iteration convergence. More interestingly, they have
shown that their Robin-Neumann method has better convergence properties and less
susceptibility to the added-mass effect (check Section 3.5.1) than a Dirichlet-Neumann
algorithm. Lastly, numerical experiments were performed in the simplified model to show
the faster convergence.

Fernandez and Mullaert| (2015) have also studied the Robin-Neumann method. Once
again, stability and convergence is proved for a simplified model, a Stokes-linearised vis-
coelastic solid system. It extends the work done for Robin-Robin methods from thin walls

to full-dimensional structures.

Other studies in strongly coupled methods include Degroote et al. (2008), in which a
1D model is used to study convergence/stability of the fixed-point method, using Fourier
error analysis. Nobile, Pozzoli, and Vergara, (2014) analysed if some nonlinear terms can
be approximated through extrapolations, in the context of haemodynamics. There, the

Newton’s method has been used along with the BDF time discretisations.

3.3.2 Loosely coupled

Loosely coupled methods usually solve, at each time ¢”, only one fluid and structure solver,

or a fixed and small number of iterations of both. They usually employ some prediction



Chapter 3. A review of some numerical methods for FSI 33

step as well. All of the strongly coupled methods we mentioned can, in principle, be used
as loosely coupled methods if we apply only one iteration for each time step. For instance,
in (Tallec and Mouro| (2001)), we have a strong coupling method, but its iteration structure
is the basis for simple loosely coupled methods.

At a time step t",

(i) use an explicit predictor for the interface displacement,

~x =5 n 3At =S n At N n—
Wl = ()" + S5 (@) — S @) (3.17)

(ii) deduce a prediction of the interface velocity

n —@p)"

~ %k

w

(iii) update the mesh on the fluid part using the predicted interface 7*|~

(iv) solve the fluid problem with Dirichlet condition u/|z = W*|z and compute the

traction o on the interface.
(v) solve the structure problem with Neumann boundary condition using the traction o

Many predictors for the interface displacement have been studied and tested, and
we refer to the survey Hou, Wang, and Layton (2012)). In |Dettmer and Peri¢| (2013), the
prediction is done on the fluid traction, that is used to solve the solid problem first. Then,
the fluid is solved through a Dirichlet condition on the interface, with the displacement
just calculated from the solid. The average from the actual traction from the fluid and
the predicted one is used to calculate the predictions from further steps. The convergence
analysis is done on a 1D model.

The the other topic of research for this type of methods has been on how to best
distribute the traction among the fluid and structure subproblems. We mention a recent
contribution called Lie splitting scheme, from Bukac and Muha| (2016)). It comes from the

idea of dividing the fluid traction using a coefficient g € [0, 1],
om= (om— fom)+ fom. (3.19)

At a time t"*!, the structure solver uses the fluid traction So fn from the previous time
step. The fluid is then solved using a Robin condition,
u}b—i—l . u?—‘rl
Y

The method has been named kinematically coupled or 3-scheme. Convergence and uncon-

n+1 n—i—l)

+op(uft p"thn = fo s (uftt prth. (3.20)

ditional stability is proved through simplifying assumptions on a FSI model with linear
membrane as a structure, and the optimum [ should be close to 1. On thick structures,
it has been shown that stability is conditional and the convergence is slower than in

membranes.
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3.4 MONOLITHIC METHODS

We shall describe monolithic methods from decision steps to design them.

1. How is the domain discretized?

As in partitioned methods, the fluid and structure domains can be discretised so that
they have nodes coinciding on the interface (conforming grids) or not (non-conforming
grids). This will dictate the need of mortar methods, for instance, to deal with the
interface (MAYR et al.| [2015; [ FORMAGGIA; QUARTERONI; VENEZIANI| 2009).

The method we construct, in the next chapter, assumes that the grid is conforming
in this sense, since it allows for simpler methods. However, as pointed out in Mayr et al.
(2015), the simulation of fluids usually requires meshes that are finer close to boundaries,

which would require the non-conforming treatment.

2. How are coupling conditions enforced?

There are at least three options for the coupling, and they may depend on the choice
of the step 1. above.

a. if the domains are conforming, then the continuity of velocity can be enforced
on the basis functions (i. e., the basis functions are continuous functions on Q* U Qf),
as in the partitioned method from [Tallec and Mouro| (2001)) as explained before. That
means that the test functions automatically satisfy v¥ = v/ on the interface I'. Thus,
as developed in the last chapter, the traction balance is also satisfied in the weak form.
Then, what is left of the coupling conditions is the construction of the fluid domain with
the ALE velocity.

b. in nonconforming grids, the continuity of velocity may be enforced on the weak

formulation as

LA(UALE-—7f)-€dv, (3.21)

as in Mayr et al| (2015). The space of the new test function £ may come from the
application of a mortar method.

c. amore flexible approach is through a Lagrange multiplier (FORMAGGIA; QUAR-
TERONI; VENEZIANTI| 2009). The idea is, from the condition of balance of traction

o/ - n+0° n=0, onT, (3.22)

to use a new variable A to divide this condition into two equations on I,

ol -n=2X
(3.23)
o’ n+A=0

and treat the continuity condition on the interface as another equation to be satis-

fied on the system. Another idea is to use the extra variable as the displacement on
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the interface and treat the traction balance as the additional equation (FORMAGGIA;
QUARTERONI; VENEZIANI, |2009). In Crosetto| (2011), A is inserted instead when the
equations have already been discretised in space and it is written in terms of the block

operators.

3. How is time discretised?

There are two main choices in this step. Firstly, one must decide what will be treated
implicitly or explicitly. By this we mean which terms will be calculated directly from the
previous iterations (explicit) and which ones will be found through a nonlinear equation
(implicit).

From the experience on partitioned methods above, the choice of explicit treatment is
usually avoided. However, for some terms, like the convective ones, successful attempts

have been made to treat them explicitly, i.e., as if they were predicted to be
V- -w'tl~V.w" (3.24)

The idea to treat them explicitly and everything else implicitly has been denoted in the
literature as a semi-implicit or geometry-convective-explicit approach (CROSETTO et al.)
2011} CROSETTO, 2011; FERNANDEZ: MOUBACHIR, [2005)). This allows the problem
to be rid of at least one nonlinearity.

The second choice is of the time discretisation for the fluid and solid parts. This has
been studied, for instance, in Hay et al. (2015), which uses a model of incompressible
ALE- Navier-Stokes coupled with a rigid body to verify the stability of BDF methods.
One complication that may arise is in methods that require a mid-step, for example, in
t"+1/2 for only the solid or fluid. Ways to overcome this issue have been studied in Mayr
et al. (2015]), with an incompressible ALE-Navier-stokes fluid. They have proposed a time

discretisation scheme that allows for more freedom of choice in the fluid and solid parts.

4. How is the nonlinear system solved?

The usual choice to solve the nonlinear system of implicit monolithic methods at each
time-step is the Newton method or a variation of it. The difficulties are the size of the
system and the calculation of its Jacobian matrix.

We describe the sketch of a Newton method with Lagrange multiplier as in [Formaggia,
Quarteroni, and Veneziani| (2009)), chap. 9., with a similar description in Mayr et al.
(2015)).

On a time-step t", we use the notations x = (U}, P",7;) and y = 7. Then, the

method can be sketched as
1. Initialise xg,y0,Ao. It could be the previous iteration or the previous iteration
corrected by a predictor as in Mayr et al.| (2015).

2. For each iteration & > 0, until convergence, do:
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a) Evaluate the residual

F(Xp, Ai)
I(’%Yk)

b) Solve the tangent problem, with Jacobian matrix Jj,

0x
Je | 0y | = —Ru; (3.26)
oA

c) Update the variables

Xpt1 X 0x
Yit1 | = | Ye |+ | 0y |- (3.27)
Akt1 Ak oA

The Jacobian J; takes the form

Dy F (Xk; Ak) 0 DaF (xx, A)
DXI(Xk7Yk) Dy<Xk7Yk) 0

and the description and full calculation of the blocks is found in |Fernandez and Moubachir
(2005)), (Crosetto| (2011)) or Richter| (2017, chap. 5). Attempts have been made to use a less
expensive Jacobian matrix, ignoring for instance the derivatives involving the movement
of domain (also called shape derivatives) or using, as in partitioned methods, some finite
difference estimates. Still, it is argued in the papers cited above that this may influence
negatively the convergence of the method and the full Jacobian might be needed.

Mayr et al. (2015) study the possibility of using extrapolation predictors at each time
step to improve the Newton method, considering an incompressible ALE-Navier-Stokes
fluid. In Fernandez and Moubachir| (2005), a monolithic method is proposed and all the

shape derivatives calculated to build the full /exact Jacobian for the Newton method.

How to make the Newton method scalable?

Since some applications may require monolithic methods, because of a stronger added-
mass effect, research has been done to make the methods faster. When it comes to
scalability and parallelisation of these methods, much of the work is focused on domain
decomposition methods and preconditioners, as in Barker and Cai (2010), Cai and Keyes
(2002) and |Crosetto (2011). Most of these ideas are about interpreting the partitioned

methods from the previous section as preconditioners for the nonlinear system.
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3.5 CONCEPTS IN STABILITY OF METHODS FOR FSI

In this section, we briefly describe two popular concepts in the study of stability of
methods for fluid-structure interaction. Both were created as attempts to explain why

some algorithms do not work well for this type of problem.

3.5.1 Added-mass effect

Numerical experiments with partitioned methods in haemodynamics have shown that the
convergence rate of strongly coupled methods, with relaxation parameters, would worsen
if the density of the fluid got close to that of the structure, or if the domain was stretched
into a more slender cylinder. In such cases, the relaxation would have to be increased.
More surprisingly, if the time step length was reduced, the convergence rate would be
further worsened (CAUSIN; GERBEAU; NOBILE, 2005). These issues did not appear
in aerodynamics simulations, because the density of air is much smaller than that of the
solid.

We now describe two papers that have studied this effect. To make the so-called added-
mass operator explicit, these articles pursue the same steps in different environments. In
the already cited |Causin, Gerbeau, and Nobile| (2005)), the steps are done in the framework
of linear operators in function spaces. In Forster, Wall, and Ramm| (2007)), the equations
have been discretised in space using Finite Elements so that we are dealing with finite-
dimensional linear algebra. In either way, linearity is key because we employ the spectral
analysis of a linear operator.

We start as in [Forster, Wall, and Ramm| (2007)), carefully assuming conditions so that

we reach a linear system for the fluid problem,

ME ME G| [w 0
M, Mfn Gr| jap| = |fr], (3.29)
GF GL o |p 0

where M and G are the matrices related to the fluid velocity @1 and to the pressure
p, respectively; I is the subindex of internal nodes and I' the subindex of the interface
nodes. We have also denoted by fr the forces on the boundary that come from the coupling
condition.

The idea is, then, assuming invertibility of matrices when needed, to solve the block

linear system and write fp in terms of up. It will be denoted as
fr = m" M 4r, (3.30)

with M4 the operator that comes from the solving of the system and m’ a constant to

normalise the operator. The added-mass operator is precisely this M 4.
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Then, for the structure, we also assume conditions enough to end up with a system,

already replacing the coupling force by what we have previously found, of the form

L)
Mgy Mgp| |dr K¢ Kpp| [dr —m" M 41ap

The name added-mass comes from the observation that the solid sees the fluid as an
extra mass (i. e., a constant multiplying the acceleration). What we have done so far
was to somehow “solve” the fluid part and substitute it in the structure. The stability
analysis will be focused on this structure problem with the fluid part compacted as one
operator.

The next step is the analysis of temporal discretisation. For example, [Forster, Wall,
and Ramm| (2007) analyse, among other methods, a loosely-coupled algorithm which, at

a time t"*!, predicts the displacement of the structure, d?}l, and use it to calculate

e dip —dip (3.32)
r At .
and solve the fluid subproblem. With a backward Euler method for the fluid and simple
predictor d?}l = df,
. N 1 n n— n—

Replacing this G} on the structure equations above, and writing the equations in

terms of eigenvectors of M 4, one is able to analyse the resulting ODE’s for stability, using
eigenvalue estimations for the M 4 found previously.

The above analysis has been done in |Causin, Gerbeau, and Nobile (2005]) on a simpli-
fied FSI model described. Since the domain is a simple cylinder, it was possible to find
the eigenvalues of M 4 analytically, which helped to prove the conditional stability found
in experiments. In [Forster, Wall, and Ramm| (2007), the model was an incompressible
fluid with a structure. Doing careful assumptions to apply the steps described above,
they attempted to also analyse the effects of the SUPG stabilisation on the added-mass

operator.

3.5.2 The Geometric Conservation Law

This concept is related to the ALE formulation of fluids and has been subject to consid-
erable debate, summarised for instance in [Etienne, Garon, and Pelletier (2009). It arises
from the observation that, when a method for computational fluid dynamics meant for a
fixed domain is used for a problem in the ALE format, its temporal accuracy may worsen.

The Geometric Conservation Law (GCL) was created to design methods that preserve
the time accuracy, at least for simple solutions of fluid dynamics, like a uniform flow. Being

more specific,
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Definition 3.1. A numerical method for an ALE problem is said to satisfy the Geometric
Conservation Law if it preserves constant solutions. That is, the constant solution is

reproduced exactly by the method.

For each method, the GCL will be written in a different way, which is usually called its
Discrete Geometric Conservation Law. For instance, for a Finite Element discretisation,
it usually means

ity — /Q ity = O [ /Q itV wdQ} , (3.34)

Qptl
for all basis functions {1;}, using ALE, and Q(-) the time integration of choice from ¢"
to t"*! or

Upd) — /Q Q2 = Q [ /Q nVs wdQ} , (3.35)

n+1
Qt

for 15, in the discretised test space (FORMAGGIA; NOBILE] 1999). Hence, the GCL is
in this case related to the accuracy of the time integrator used.

As stated in [Etienne, Garon, and Pelletier| (2009), this concept has gained attention
because it has been proved that a specific class of Finite Volume methods is stable if,
and only if, it satisfies the GCL. However, researchers have later constructed methods
that do not satisfy the GCL and are stable, and also methods that satisfy the GCL
but are not stable. Nowadays, the GCL condition is used because it is convenient in
the analysis of the methods, since it offers an estimate independent from the ALE mesh
velocity (FORMAGGIA; QUARTERONI; VENEZIANI| 2009). For example, it can be
proved that the GCL property as stated above implies that

Q| [ 1 )PV w2 = Il 3y — 1k o (3.36)

(FORMAGGIA; NOBILE, [1999).

We now summarise a few studies on the GCL. In Boffi and Gastaldi (2004), a 2D
parabolic model with moving domains using ALE was used to study a few methods that
satisfy and do not satisfy the GCL property. In the already mentioned Formaggia and
Nobile (1999), a linear advection-difusion model was used for Finite Element Methods,
and in |[Farhat, Geuzaine, and Grandmont| (2001), a nonlinear system of hyperbolic con-
servation laws and Finite Volume methods. In the latter, it was proved that satisfying
the GCL condition was sufficient to preserve a type of nonlinear stability for the method
studied.

Finally, Etienne, Garon, and Pelletier| (2009) have studied the GCL condition on
incompressible fluids and Finite Element Methods. The goal was to keep the time inte-
gration method untouched and modify the calculation of divergence of the ALE velocity
and the ALE velocity itself so that the method satisfies the GCL. That would ensure that

less work is needed to change existing codes.
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4 THE METHOD WITH A MONOLITHIC PREDICTOR

4.1 DESCRIPTION

Our method attempts to connect both types of methods, monolithic and partitioned. It
is based on the idea that, if the values on the interface I' were accurately predicted, then
we would only need one use of structure and fluid solvers at each time-step. Since the
functions might not be differentiable on the interface (cf. Chapter 2), we propose a more
sophisticated predictor, by solving a smaller fluid-structure interaction problem, using the
monolithic method, on a tube surrounding I'.

To illustrate the method, we consider a hypothetical fluid-structure interaction prob-
lem with initial domains €2y and €}, with an interface I We then consider a tube

Q=0 U Q,, around such interface.

FIGURE 2 - The predictor as a smaller problem surrounding the interface

Ly Iy
Qy
r r
Q,
Original problem Tube around T', in gray

SOURCE: The author (2020).

In the notation of the Figure 2, Qf is the portion of the tube inside the original
domain €2 of the fluid, and Q, is defined analogously. Also, T F = 9, N int(€2s) and
I, = 00, N int(£2), that is, they are the portions of the boundary of the tube that are in
the interior of the original domains.

We consider a time discretization using a fixed step length At, and a generic time
integrator procedure. The idea is to apply a monolithic time-step algorithm, using as
previous iteration values, such as u, the previous values of the whole (original) problem,
and retain its original boundary conditions where the boundaries of the tube and original
problem coincide.

We impose special boundary conditions on I'y and I'y. In this work, these will be

extrapolations of the original problem, as Dirichlet conditions. The idea is that, even
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though the functions on I' are not differentiable, they are differentiable inside the domains.
We could also consider different conditions, such as Neumann and Robin, but these will
be left for future work.

For the extrapolation to be meaningful, the initial iterations must be done with another
method. For example, when BDF time integrators are used, we may use another method
to solve the n first steps it requires.

Our algorithm can be summarised as follows.

TABLE 3 - Algorithm with monolithic predictor

Step 1. Solve initial time-steps required for the time integrator of choice

For each time-step until reaching final time
Step 2. Extrapolate the boundary conditions for the monolithic predictor
Step 3. Solve the monolithic predictor
Step 4. Get the new fluid domain, using the prediction
Step 5. Use the prediction to solve the fluid and solid subproblems

SOURCE: The author (2020).

4.2 ANALYSIS USING PARABOLIC EQUATIONS

We shall use simple parabolic problems to detail the method and analyse some of its prop-
erties. In this case, the domain is artificially divided into two, to mimic the FSI situation.
As future work, we could consider the coupling of two distinct parabolic problems.

We start by writing our main problem (P1) on a fixed domain €2, with Dirichlet
conditions. We could also consider Neumann conditions, which cancel just as well during
our calculations. Here, t € [0, 7], and L is an elliptic operator. We require that its related

bilinear form a(u,v) = (Lu) - v satisfies the coercivity property with a constant «,
a(v,v) > al|v|[3, Vv € HY(R), (4.1)
and continuity with constant M,
a(u,v) < M|u||1||v]|1, Yu,v € HY(Q). (4.2)

The problem is written as

?;Z+Lu:f, in Q

(P1) u(0) = ug, in
u=g, on 00, vt € [0,T]
The function space in which we are looking for solutions and to which ¢ belongs will

be important later, by providing a simple existence and uniqueness theorem. We might
consider, then, that u € V = L?(0,T; H*(Q2)) (see Section 2.1).
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Assuming that we know the solution u(t), for [0,%;], we want to find u(ts) for some
to < T, with t5 > t;. Thus, we want to extend the solution u for (¢1,t3]. The domain is

divided in two, 2; and s, with an interface I', and Figure 3 is very similar to Figure 2.

FIGURE 3 - Tube description for the parabolic problem

Q
Q
r ' r
Qs
0, I
Original problem Domain with the tube

SOURCE: The author (2020).

The idea of the algorithm, written in its ‘continuous form’, consists of two steps:

First method: time-dependent Dirichlet conditions

Step 1. Prediction. Solve the problem inside the tube, using an extrapolation u*(t) of
u(t) based on its known values in [0,¢;]. We want to find @(t), for ¢ € (¢4, ts], such that
ou

E—FLﬂ:f, in()lUQQ

(PZ) ﬂ(tl) = U(tl), in Ql U QQ
ﬂ(t) = u*(t), on Fl U FQ, Vt € (t17t2]
i =g, on (9Q; NIN) U (99, N N)

Step 2. Solution in the subdomains. Use u, assumed to be found within the interval
(t1,t2] to solve the two subproblems in ; and s,
Find u,, for t € (¢, 5], such that

ou .
a—tl+Lu1 = f, in
(P3.1){ wi(t) =u(tr), in €y
up = g, on 0y NOSY

ur(t) = u(t), on I, Vt € (t1, 2]
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Find uy, for t € (¢, 1], such that

ou )
a—;—i—Lug:f, in
(P3.2){ u2(tr) = u(tr), in 2
Uy = g, on 02y N O

up(t) = u(t), on I, Vt € (t1, 2]

We also consider a slightly simpler algorithm, in which the Dirichlet condition is taken
as constant. This is because, if we want to reuse some black boxes, some do not have the
implementation of a variable Dirichlet condition. The subproblems will be identified with

the letter m.

Modified method: constant Dirichlet conditions

Step 1. Prediction. Solve the problem inside the tube, using an extrapolation u*(t3) of
u(ty) based on its known values in [0, ¢;]. We want to find u(t), for t € (¢1, 3], such that
L= f, 0, U0,

(P2m) U(ty) = u(ty), in Q UQ,

u(t) = u*(ta),on I'y UTy, Vt € (¢, 9]

i =g, on (8Q; NAN) U (8Q, N ON)

Step 2. Solution in the subdomains. Use u, assumed to be found within the interval
(t1,t2] to solve the two subproblems in ; and s,
Find u,, for t € (¢, 1], such that

ou ‘
aitl—l—Lul = f, in
(P3.1m){ wi(t) =u(tr), in €
up = g, on 0§ N OS2

Ul(t) = ’lj(tg), on F, YVt € (tl, tQ]

Find uy, for t € (¢, 1], such that

7+LU2:f, iHQQ

(P3.2m){ u2(t) = u(tr), in
uy = g, on 082 N OS2

us(t) =1(tz), on I', Vt € (t1,1]

4.2.1 Estimates for the continuous problem

We estimate how close @ is from the solution of (P1), inside the tube Q. We depend

on an existence and uniqueness result, which itself depends on the function spaces being

considered.
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Theorem 4.1. Let u be the solution of

ou ‘
. En +Lu=f, in
(1) u(0) = ug, in

u =g, on 0f),
for t € [0, 7], and w the solution of

%l;qLLw:f, inQcQ
(ii) w(0) = up, in Q
w =g, on QNN

w(t) = u(t),Vt € [0,T], on N — IQ

Under conditions that guarantee the uniqueness of the PDE above, then w = u a. e. in

Q.
Proof. We observe that u satisfies the system (ii), and apply the existence and uniqueness
result to that system. ///

We start with the analysis of the first algorithm, with time-dependent Dirichlet con-
ditions. Our main theorem, below, estimates the difference between the solution of the
original problem with the solution obtained inside the tube from problem (P2).

We have simplified the theorem with the assumption that Q) does not intersect 01,
that is, we do not have to worry about the original problem’s boundary conditions. A
more general proof, removing such assumption, would not be much more different, since
the terms related to these boundary conditions would disappear when we subtract one
weak formulation from the other.

To simplify our notation, we have denoted by || - || the L?(€2) norm; (-,-) the inner

product, also in L*(Q); and V' = H}. (Q). We also remind the reader that o and M are

the coercivity and continuity constants, respectively, related to the operator L (Equations

and ().

Theorem 4.2.  Let w be the solution of (P2), on the tube, and w the solution of
the original problem (P1). Let us also denote by u* = u + s the extrapolation of choice,
where u is the exact solution, s the approximation error, and U and S their corresponding

liftings in the function space V. Then, we have that

lw = @)@+ a [ llw=a)w)lfr

Mty — ¢ t
<2 {\/Qalmaxse(o’tQ]HS(T)Hl + /t1

t
F2lISWIE +4 [ 1IS@)lfdr

oS 2
E(T) 0 dT} (4.3)
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for t € (t1,t2]. Moreover, if the approximation in u* is of order p, and its lifting maintains

such order, then

to
[|(w — @) (t2) [ + oz/o [|(w —@)(7)|[1dr < Cath, (4.4)
for Cg > 0.
Proof. We shall consider two problems for t € (1, ts]: the one from the first theorem,
O _
8—1; VLG =f, inQ

(1) W|,e(t) = ul(t), Vt € (t1,ts)]
w(ty) = u(ty), in Q,

and its perturbed version

881:+Lw:f, in Q

() wl,5(t) = w(t) = ult) + s(t), Vt € (¢,
w(ty) = u(ty), in Q.

As stated in the theorem, we denote the lifting of u* to H'(Q) as U* = U + S, where
U is the lifting of U, and S the lifting of s. The following are simple modifications of the
standard calculation that can be found in |Formaggia, Saleri, and Veneziani (2005]).

We multiply problem (i) by v € V' and integrate in Q, to obtain its weak formulation.
We want to find w = w — U € V such that, for all v € V' and almost all ¢ € (¢, 5],

(%f,v) +a(w,v) = F(v) —a(U,v) — (%Z,v) : (45)

Analogously, the weak formulation of the problem (ii) isto find w=w —-U - S € V
such that, for all v € V' and almost all ¢ € (¢, ],

oU +5) U) (4.6)

Subtracting from ([4.5), we get
<8w _ w, v) +a(w —w,v) = —a(S,v) — <8(S)’U> (4.7)

ot
Taking v = w — w,

olw—w) , o L as . _
<8t,w—w)+a(w—w,w—w)——a(5,w—w)—(at,w—w>. (4.8)

We apply the continuity property for a and Young’s inequality to get the relation
a(S, i — w) < M]|S|s]o — @], (4.9)

M? a, .
S%HSH%JrgHw—wH%, (4.10)
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and substitute (4.10]) in (4.8]).

Using integration by parts in the first term of (4.8]),

«

28t||( D))+ @ -w) )i < ﬁuawn%“%f(t)

(@& =) (8]l (4.11)
0
Integrating in time, noting that (w — w)(¢1) = 0, and multiplying the inequality by 2,

@ = w)Ol +a [ 11— )] dr

M? gt o
< 7/ 1Sk | (@ —w)(7)llodT (4.12)
(6% t1 0
We now bound the first term on the right,
M? gt M?(ty — t1)
— [IS()lftr < ==L max,eq, 157 (4.13)

Replacing (4.13)) in (4.12)) and using the Gronwall Lemma,

{1~ m)0lE + o [ 16 - m)lfar)

M/te — 1
< X = -
—_— \/a

Since w = w+U and w = w+U + 5, using the convexity inequality from Rudin| (1987,

MaXee (1) |[S(7)]

95 dr. (4.14)
0

p. 64), which states that for positive functions f and g, and for p a positive integer,
[f + gl < 27H(IfP + 1glP), (4.15)
we have
mw—@@ﬁ+a/mm—wwwwf
= ||(@ —w)(t) ||o+/ [I(w — S(r)|[tdr (4.16)

<2 (Il @I+ [ I - w)@lldr + ISOIE + [ 15()Ifr)
(4.17)

{ maXTG (t1,t2)] HS dT}2

+2/[S(t) ||0+4/ 15(7)| 3. (4.18)

Now, our hypothesis indicates that there exists C > 0 such that |s(t)| < CitP. If we
suppose that this bound is maintained for its lifting, that is, [|[S(¢)||; < C1t?, then we
have that

to
[1(w — @) (t2)|[5 + Oé/t [|(w —@)(7)|[{dr < Cath, (4.19)

1
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for a constant Cy > 0. ////

The result form Theorem 4.2 indicates that our method is promising, at least in its
continuous form, as our predictor maintains the approximation order used on its Dirichlet
conditions.

We now attempt to proceed in the same way for the modified algorithm with constant
Dirichlet conditions, and will use the extrapolation of u at t5 for them. To simplify the

notation, we consider t; = 0.

Theorem 4.3. (Modified algorithm with constant Dirichlet conditions) Let @ be the
solution of (P2m), on the tube, and w the solution of (P1), restricted to the tube. Let
us also denote by u* = u(ty) + s the extrapolation for time ¢y, where u(ty) is the exact
solution at time ¢y, and s is the approximation error. As in the previous theorem, U and

S denote the liftings of the functions u and s, respectively, in H 1(@) We then have

I - m&mm+a/QMw @)(r)|[2dr
{5 [ |5

to
|} st +a [ 106) v - s
0

(4.20)
for t € (O,tg]
Proof. The proof is similar to the one for Theorem 4.2. We consider the original problem,
0 ~
a%} Y Lw=f inQ

(i) wls(t) = ult), Vt € (0, ]
w(0) = u(0), in O

and its perturbed version

%l:—i—l)w—f, in Q

() ) ], (1) = u(ta) = u(ta) + s(ta), Yt € (0, 4]
@(0) = u(0), in Q.

Let us denote the lifting of u* to H*(Q) as U* = U + S.
We multiply problem (i) by v € V' and integrate in Q, to obtain its weak formulation.
We want to find w = w — U such that, for all v,

ow ou
— b,v) = F(v) — — | = . 4.21
(mﬂ9+aWW) ()~ a(U,0) (mﬂ) (1.21)
Using the weak formulation of the problem (ii), we want to find w =w — U — S,

<%l:, v) + a(w,v) = F(v) — a(U + S,v) (4.22)
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Subtracting (4.22) from (4.21)), we get

ow —w ou
D —W,v) =— — 4.2
( pr ,v>+a(w w,v) a(S’U)+<8t’U> (4.23)
Taking v = w — w,
G =) ) 4 a(is -, — ) = —a(S, — ) + (L w5 —w),  (4.24)
ot ot
Using the same ideas from the last theorem,
10,,. o QL ,  M? , |[OU .
=2 | — - < = - . (4
35718 =N + Sl - I < SIS+ | GO @ -m Ol (429

Integrating in time from 0 to ¢, and noticing that (w — w)(0) = 0,

M?t,
(0%

-y O)l+a [ i) | < rWM+2Aﬂﬁ§@o (=) () lodr. (4.26)

Using Gronwall’s Lemma,

dr. (4.27)
0

{ia - mol + 20 [ o —woitar} < D ysi [ 5

Substituting w = w 4+ U and w = W+ U(ty) + S, and using the same convexity

inequality as in the previous proof,

lw = @)EIR+a [ llw = @)
=l - w)(t2) — S +a [ @ - w7 +UE) - Ule) - SlRdr (429)
< 2@~ wE)IR +20 [ l[@ - w)()|izdr +2]]R

+ 920 /: 1U(7) — Ults) — S|2dr (4.29)

Mty t|oU
<2{ sl + [ %)

dT} +2||S]12 4 2a /0” |U(r) = U(ts) — S|3dr./ /)

(4.30)

This means that we may not have the original prediction order. Unfortunately, as
the next chapter with numerical tests will show, considering the Dirichlet conditions as
constants does have a significant impact on the solution, and the algorithm might really

be unstable.

4.2.2 Estimates for the discretized problem

We can use the same arguments as above to couple the difference between wy and wy,

for a regular triangulation of the domain, into standard estimate theorems for parabolic
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problems. The subscript h is used to denote the interpolation of a function from H 1(Q)
into the discrete function space given by the triangulation 7;, (for instance, V¥ from
Section 3.1).

We consider, for example, the theorem concerning the semidiscretized generic parabolic

problem, in |Quarteroni and Valli (1994)), with operator

Lw = Z D;(a;; Djw) + Z i(byw) + ¢; Dyw] + apw, (4.31)

2,7=1 2,7=1

with coercivity constant a, with Dirichlet conditions being zero along the entire 0€2:

Theorem 4.4. (QUARTERONI; VALLI, |1994, Proposition 11.2.1) Let 7T;, be a regular
family of triangulations and assume that piecewise-linear or -bilinear finite elements are

used. Assume moreover that the solution of the continuous problem satisfies
[[u(t)||3 < C(||Lu(t)||2 + |[u(t)||]), for almost all ¢ in [0, 77, (4.32)

and that f € L*(Qr), ug € V, a;j, b € CY(Q),ci,a0 € L>®(). Then the solutions u and

up, to the original and Galerkin approximations, respectively, satisfy
t
[Ju(t) — un(®)][3 + a/o [|(u = up) (7)|[3dr

t
< Iluo = wnollo + Cash? (Ilunol £ + Iluol £ + [ 1177 ) (139

for almost all ¢ € [0,T]. Here, « is the coerciveness constant of the bilinear form, = its

continuity constant and C,, , is a suitable constant independent of h.

Corollary 4.5. Let S;, be the lifting of the error s of the approximation of choice for the
Dirichlet condition of our monolithic predictor. Then, the error inside of the monolithic

predictor with time-dependent Dirichlet conditions and ¢; = 0 can be estimated as
t
[1(wn — @n) ($)]]5 + 04/0 | (wn — @n)(7)|[Ydr

t
< 2wo — wollo + 2Cash? (Ilwnollt + lwolft + [ 1l dr)

VMts 085,
+4{\/amaXTEOt2]||Sh ||1+/ H h

HAISUOIR +8 [ 1Sl

0 dr}2 (4.34)

for t € (0,t,).

Proof. Using the same argument from Theorem 4.2,

= @) O + 20 [ 1(wn — @) ()] e
8Sh 2
<2{Jw\/ét_maXTe(0t2]HSh( Hl‘f‘/ H dT}
+2H5h(t)llo+4/0 1Su(7)| 2 (4.35)
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Now, using the convexity inequality from the proof of Theorem 4.2,
@Ol +a [ i =@ )lRdr
< 2w — )OI + 20 [ 11w — wn)(7) Fidr + 2l — )0
+20 [ 1w — @,)(7) s (4.36)

t
< 2w — wnllo + 2Carh? (Jluwnoll + lluollt + [ 11£()IEdr )

VvV Mty oS,
+4{\/amaXT€0t2]‘|Sh H1+/H h

+4|Su (0[5 + 8/0 1Sh(D)Iidr.// ]/

d7}2 (4.37)

In the same way,

Corollary 4.6. One estimate for the solution inside of the monolithic predictor with

constant Dirichlet conditions is
to
|| (wn, — @n) (t2)|[§ + 04/0 |(wn, — @) (7)) dr

to
smm@—me+2amW(m%M?umm@+A\vvm@ﬁ

[

—|—4oz/0 U (7) — Un(ts) — Sl[2dr.

2
T} + 4| Sn |2 (4.38)

Proof. The proof is analogous to that of the previous corollary. ////

We now analyze the fully discretized problem. Assuming a uniform time discretization
of time step size At, we study what happens to the difference between the solution of
the discretization of the original problem and the solution given by our algorithm. Our
analysis is limited to the #—method.

There are two ways to introduce these 6-methods, and we follow these descriptions
from Quarteroni| (2016). Firstly, we proceed as in the Section 3.1, discretizing the equation

in space using finite elements, to reach an ODE system of the format
Mu(t) + Au(t) = f, (4.39)

where M and A are matrices and u(t) is the vector of degrees of freedom. The #-method
consists of discretizing this ODE in time as
ukt — b

M A (1 0] = 06 (- o), (4.40)
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g €[0,1].
However, when dealing with weak formulations, a practical way to analyze the 8-method

is by using the approximations

E+1 _ K
U~ %, (4.41)
u~ fut! 4 (1 - 0)u”, (4.42)
and
f ~ OfF T 4 (1 — O) " (4.43)

Theorem 4.7. For the monolithic predictor with time-dependent Dirichlet conditions,

the #-method gives the estimates
||”“rl UZ“HO < ||S,’j+1||0, when 6 = 0, (4.44)
and
it = < 1S+~ 157+ o, when 0 0. (4.45)
e 9At ’

Proof. Let us consider the weak formulations as above and apply the 6 —method to them:

The original formulation becomes

Alt(“”+1 iy, vp) + a(@upt 4 (1 — )iy, o)
= (0f(t n+1) (1= 0)f(tn), vn) — a(OU; " + (1 = O)Uy, vn) (4.46)
- U = U,
and our method gives
T T ) + a6+ (1 6)7, )

= (gf(tn-l—l) + (1 - Q)f@n)a Uh) (Q(UH—H + Sn+1)

+ (1 =) (U + S, vp) — A (U"+1 + St U — S ) (4.47)

From the construction of the algorithm, we have that @} = uj, S} = 0, and therefore,
u"™ = u". Therefore, subtracting (4.47)) from (4.46)),

(T = vn) + a0y =), vn) = a(0S5T o) + (S"“, ). (4.48)

A
Substituting v, = 4}t — @t in ([{.48)), multiplying the result by At, and using the
coercivity and continuity properties of a,

[l = G + af Aty — T

< MA|OSE | [y =+ (1S5 o [l ™ = lo- (4.49)
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If & =0, then (4.49) gives

[l = o < 1155 [lo- (4.50)

In the case when 6 # 0, we now ignore the first term on the left side of (4.49)), and
use the fact that |[v]]o < [|v]]1, Yo € HY(Q),

a&AtHu"H Hn+1|ﬁ

< MA|OSE |1 [y = 4 (1S o [l ™ =z (4.51)
Assuming that ||a} ™ — @ ||, is not zero,
af At|[ar ™ —a | < MAH|OSTH |+ 1S o (4.52)
Finally,
it =t < S ISE =15 e /1) (4.53)
a 9At

The result above once again indicates that the order of approximation of the extrap-
olation on the boundary of the predictor can be conserved into the solution, when 6 = 0.
However, we may lose one order of convergence when 6 # 0.

We now apply the same procedure for the method with continuous Dirichlet conditions.

In this case, however, we could only estimate the case when 6 # 0.

Theorem 4.8. Using the # method, on the monolithic predictor with constant Dirichlet
conditions, if 6 #£ 0,

i =@+ o < (o + o) N0E* = Ol + (14 5) 1Sl (150

Proof. We once again consider the weak formulations of the problems as above and apply
the 6—method in them:

The original method becomes

1
g (T = o) + (@™ + (1= 0)iy, on)
= (0f (tas1) + (1= 0)f(tn), va) — a(0U; " + (1 = 0)Uy7, vn) (4.55)
1 n n
At(UhH Uy vn),

and our method reads

1

A7 — @t = A vp) + a0t + (1 - 0)ay, vy)

= (0 (tns1) + (1= 0)f(tn), v0) — a(U;™" = Sy, v). (4.56)
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From the construction of the algorithm, we have that w} = uj. Subtracting the

equality (4.56)) from (4.55)),
1 ~n —nNn ~n —nNn
At( uptt —apt o) + a(@(uptt —aptt), o)

— a((6— DU 4 (1 — )T — Sh,vp) — —

E(U,’j“ — U, o) (4.57)

Substituting v, = u}™ — @™ in ([4.57), multiplying the result by At, and using the

coercivity and continuity properties of a,

[l = TG + afAt|lap ™ —a
< MAH[(O — DU + (1= 0)Up — Sllu [[ay ™ — @™
H O = Upllo lap™ =, o (4.58)

As in the last theorem, if § # 0, we can ignore the first term on the left,

af At — [
< MAH|(0 = DU + (1= 0)Uy — Sl [Japt — a3
U = Upllo Nap ™ — a1 (4.59)

Therefore,

af At|[ap ™ — @t |,
< MAY|(O = 1)U = U) + Sl + U = Uyl (4.60)
< (1+ MOAOUFT = Ul + aAt]|Sul|s, (4.61)

and

OéeAtHU/n+1 n+1H
= afAt||ap ™ + UPT — @t + U+ Su) o (4.62)
< (14 MOAD|UT = UPM|1 + aAt]|Shll) + a0AL][S]]:. (4.63)

So, assuming 6 # 0,

A o = vl o+ (14 ) ISl 4)

||un+1 ﬂZ_HHO S (

Once again, this raises the possibility that the predictor with constant Dirichlet con-

dition is not practical.
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5 NUMERICAL TESTS

We now present results from an implementation of our method in a simple Fluid-structure
Interaction problem. In the first section, we describe the software, code and hardware used
in our simulations. The second section is meant to present the problem we are solving,
which is an elastic tube with fluid inside. Finally, we show results and comparisons

between our method, with two sizes of tube, against a simple extrapolation predictor.

5.1 COMPUTATIONAL ENVIRONMENT AND TOOLS

The test was run on a Dell G7 Laptop, with 8GB of RAM, and an octa-core 8th generation
Intel Core i5. Although the software we used can be run in parallel, we have only tested
its single-thread version. The maximum of RAM used was 3.3GB, when testing using a
refined mesh and a thin predictor, to be described below.

As a base code, we have used LifeV, from EPFL, Politecnico di Milano and Emory
University, which is distributed under the LGPL 3 license. It is written in C++, and
contains finite element facilities, and some codes for Navier Stokes equations and Fluid-
Structure Interaction. The code also uses the Trilinos Packages, from Sandia Corporation
under BSD and LGPL licenses, which is also written in C++ and contains code that allows
for parallel methods in numerical linear algebra and other utilities. The LifeV code has
been retrieved from its BitBucket repository, in the 12th of June, 2019.

More specifically, our method’s implementation is based on the FaCSI method (DE-
PARIS; FORTI, et al., 2016; FORTI; DEDE, 2015). It is a block-preconditioned mono-
lithic method, coded in LifeV by Davide Forti. The Navier-Stokes equations are discretized
using the Geometric Convective Fxplicit approach, described in Chapter 3, and it uses the
SUPG stabilization technique. The tube test problem was adapted from the one written
by Paolo Crosetto (CROSETTO, [2011)), also in LifeV.

We have used open-source auxiliary software such as ParaView, version 5.4, from
Kitware Inc. and Los Alamos National Laboratory, to create figures and animations, and
FreeFEM (HECHT, |2012)), version 4.2, to build all the meshes.

5.2 THE TEST PROBLEM

The test problem, as in (Crosetto (2011), consists of an elastic tube with an incompress-
ible, Newtonian fluid inside. The fluid is modeled through the Navier-Stokes equations,
and the structure is a linear elastic solid. We have retained the constants from the orig-
inal problem, and its initial time-step size. Indeed, we have not checked whether any
convergence condition, such as CFL is satisfied. The fully monolithic method, used as a

benchmark in our tests, is also assumed to be convergent.
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TABLE 4 - Properties for the fluid
Density

ps = lg/em?
vy =0.03g/(cm s)
SOURCE: The author (2020).

Dynamic viscosity

TABLE 5 - Properties for the structure

Young’s modulus
Poisson’s ratio
Density

E, = 3 x 10%dyne/cm?
vs = 0.3

ps = 1.2g/cm?
SOURCE: The author (2020).

The cylinder domain is depicted in the Figure [{] below, with a top view on the left,
and an axial cut on the right. The structure part is shown in grey, and the white interior

is the fluid domain. The cylinder has a length of 5¢m; the fluid part has radius of 0.5¢m,
and the solid external boundary has a radius of 0.6cm.

FIGURE 4 - Cuts of the domain
S S
D1 D2
rf, Iy,

SOURCE: The author (2020).

The Dirichlet conditions I'}, 4, I'}, , and Fﬂ are all zero, and the Neumann condition
'} is a constant normal stress of o - n = 6650dyne/cm?.

The meshes, with approximately h = 0.25¢m, are shown in the Figure [J] below.

FIGURE 5 - Mesh for the structure, with 1260 points, and for the fluid, with 2646 points
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SOURCE: The author (2020).

We tested two different tubes for the monolithic predictor.

95
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The first, that we refer to as thin, is made of all the structure domain, plus a tube of
thickness 0.1 around the interface, for the fluid. In the Figure [f, accurately scaled, this
would be the dashed, lighter gray portion of the fluid domain.

FIGURE 6 - Cuts of the thinner tube

SOURCE: The author (2020).

The second tube for the predictor, referred to as thick, uses all of the structure’s
domain, plus a tube of thickness 0.2cm, for the fluid. Once again, this corresponds to the

dashed, lighter gray portion on the Figure[7

FIGURE 7 - Cuts of the thicker tube

SOURCE: The author (2020).

Their corresponding meshes for the fluid part are as in Figure[§ The thin fluid tube
has roughly 48% of the amount of points than the original problem, and the thick one,
79%.

FIGURE 8 - Fluid mesh part for the thin tube, with 1260 points, and for the thick one, with
2100 points
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SOURCE: The author (2020).

Time is discretized through a second-order BDF method, and the polynomial order
for the Finite Element Method is one. Once again, this choices correspond to what was

already implemented.
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5.3 RESULTS AND DISCUSSION

5.3.1 Stability

We first observe whether our method is stable. The following plots, Figures[9, [I] and
show the [% error, that is, the [? difference between the solution using our method, with
the thick tube, and the solution using the benchmark monolithic method. Along each
solution function, we also plot its [? relative error, that is, the [2 error divided by the {2
norm of the benchmark solution. The markers square, triangle and star mark such an
error, at the simulation time of the bottom axis.

We tested our method with three different time steps. Since our method begins in
the third time step, because it requires two initial solutions to prepare for the BDF time
integration, we omitted these initial results from the plots. The legends are the same for

all plots, and At in these legends should be multiplied by 1073.

FIGURE 9 - Errors for the fluid velocity using the thick predictor
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SOURCE: Data from this research (2020).

We notice that the error we got from our method is significant, especially in Figures[d
(a) and [1(] (a), and although the relative error seems to stabilize, as in Figure[] (b), we
cannot claim that our method converges for the fluid’s velocity and fluid’s pressure. This
was our suspicion in the last chapter, by which we have seen that treating the Dirichlet

conditions as constant might spoil the method.
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FIGURE 10 - Errors for the fluid pressure using the thick predictor
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SOURCE: Data from this research (2020).
FIGURE 11 - Errors for the structure displacement using the thick predictor
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SOURCE: Data from this research (2020).

5.3.2 Quality of the prediction

We now compare the solutions from our method with the one from a simple predictor

method, by which we extrapolate the interface functions, using the simple
up =2u" — u" ' and df = 2d" — d" P,

and feed these functions into the fluid and structure subproblems. We shall refer to the
latter as the simple method.

For each variable, divided into the Figures and [14, we compare the predictors
within the same time-step size. These errors are, once again, calculated taking the solution

using the fully monolithic method, as the benchmark.
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FIGURE 12 - Comparison of the fluid’s velocity using different predictors
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FIGURE 13 - Comparison of the fluid’s pressure using different predictors
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FIGURE 14 - Comparison of the structure’s displacement using different predictors
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SOURCE: Data from this research (2020).

Figure |14 shows that our method has better stability properties than a simple predic-
tor, for the fluid’s velocity. The same happens for the fluid’s pressure, in Figure [15, but
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the simple predictor is more accurate in the first steps. For the structure’s displacement,
in Figure the simple predictor is better in the [2 norm, but becomes less accurate than
our method after a few steps in the [*° norm.

Having done the quantitative comparison between the predictors, we now turn to a
more qualitative analysis. We plot the functions found using the different predictors, to
compare how close they fit in the benchmark solution, called Full in the legends. Since
we have radial symmetry, we have selected a line, along the interface, from the point
(—0.5,0,0) to (—0.5,0,5), along the cylinder’s length, and plot each of the coordinates of
the solutions. The results are shown for each of the time step sizes, but we plot only the
third and last time steps, that is, the first prediction and the outcome of the algorithm
until the end of the time period.

We report here the plots for a time step size of 0.25 x 1073, Those for At = 0.5 x 1073
and At = 1072 are shown in the Appendix. In the following plots, fluid’s displacement

is equal to the displacement of the fluid’s domain, 7.

FIGURE 15 - Plots of the fluid’s pressure on the line, with At = 0.25 x 1073
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SOURCE: Data from this research (2020).
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FIGURE 16 - Plots of the fluid’s displacement on the line, with At = 0.25 x 1073
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FIGURE 17 - Plots of the fluid’s velocity on the line, with At = 0.25 x 1073
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Fluid velocity af time 0.005

B
O S
B i S
@ 04 J“.':: e @ | ]
= R o = 5 )
-3 £ o
T A F B0l !
S % 4 3
1) -164 %
I A I B
I AN B ool vt
= AN Full = L Ful
B = = Simple W ~ ~Thick
A — ~Thick K B Thin
. ’ -~ Thin w - =Simple
0 | 2 3 4 5 0 ) 2 3 4 5
X position X position
(c) (d)
001 Fluid velocity at time 0.00075 0= Fluid velocity at time 0.005
[ ] O o i e e (1] . :
— 3 . -— i = = - .y
g " /z;,- g 0= S semz S Emannes
B ooy /g T | ;
— [ VO — 1 #+
S R S ¥ ’
o 0024 ¥ o911 e’
2 W 2 Vo
03234 1
R I Ful a v Ful
o v/ 5|u el %7 1 srl e
004 ¢ = ==mp Y = ==mp
@ ~ _Thick | 'y ~ _Thick
005 - Thin 0l " - Thin
o ) 2 3 4 5 o ) 2 3 2 5
X position X position
(e) (f)
06 Fluid velocity at time 0.00075 0" Fluid velocity at time 0.005
’ !
n
L}
0.4 mh 2H '_‘
[ ¥t o |,
T |1 T
£ 024 N . £ 14F 1
T )/ ¥ T o4
o gf * S —— e O gleZq 7 SN | ——
3 o | -z 8o i S m T oo
o o” 5 0| i ’f -
D 024 LI J4 ' i
r< § F Full = 2 i I Full
= ol Y/ - =Smple | “ P - - Simple
i — —Thick -2 W — —Thick
o0 B } ‘ ---- Thin
"0 ) 2 3 4 5 0 ) 2 3 4 5
X position X position

SOURCE: Data from this research (2020).

From these many plots, we highlight a few interesting features. Overall, our method
correctly predicts the format of the benchmark solution. However, it seems to be “stuck”

in the beginning of the cylinder, while the solution through the monolithic method propa-
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gates through it. Also, apart from the first coordinate of the fluid’s displacement, there is
a significant error in the magnitude of our predictions. Such error was already highlighted
in the quantitative comparison.

As for the comparison of our method with a simple prediction, there are two main
observations. The first is that the simple predictor behaves much better at the first
prediction. The second is that our method seems to be more stable, as in Figure[I7, and

it better predicts the format of the benchmark solution, also as in Figure |17

5.3.3 Sensitivity to the boundary condition and mesh refinement

Our investigation continues into checking what happens when we double the Neumann
condition on the boundary, by applying a normal stress of 13300dyne/cm?. We show the
plots for the thick predictor, in the Figures[18 [19and [20, but the behavior of the method
is similar for the thin one: the error roughly doubles, and the relative error stays very
similar to that of the problem with half the pressure.

Once again, the At from the legends in the plots are meant to be multiplied by 1073.

FIGURE 18 - Error for the fluid’s velocity with the thick predictor
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SOURCE: Data from this research (2020).

Our last test checks the behavior of our algorithm when we refine the mesh. We have
attempted to use half the length of the tetrahedra. The fluid’s full domain mesh contains
12997 points; the thin predictor for the fluid and structure meshes both contain 4920
points. Since the results are still very similar to the original, we only report that the 2

errors have roughly doubled, while the [* and relative [? errors stayed roughly the same.
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FIGURE 19 - Error for the fluid’s pressure with the thick predictor
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FIGURE 20 - Error for the structure’s displacement with the thick predictor
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FIGURE 21 - Refinement of the full fluid mesh and the fluid part of the thin predictor
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6 CONCLUSION

As a starting point and motivation for our proposed method, we have given some back-
ground in how Fluid-Structure interaction problems are modelled, choosing the ALE
option for the coupling. We then described the idea behind the two classes of methods
available, namely monolithic and partitioned ones. While the main advantage of the first
is the stability of the method, it is criticized for the fact that it does not allow for a
straightforward use of specialized methods for fluid and structure. It is also a disadvan-
tage that it generates a large nonlinear system of equations, when discretized. However,
partitioned methods are sometimes not stable, through the added mass effect, and even
when they are, they require many iterations at each time step of both fluid and structure
problems, which can also be expensive.

With this context in mind, we have then shown our method. In one way, it can be
presented as some sort of hybrid of monolithic and partitioned methods. But perhaps
more simply, the idea of the method is to overcome the possible non-differentiability of
the functions on the interface, which might not allow for the use of simple extrapolations
as predictors. The point of our proposal is to use extrapolations inside of the fluid and
structure domains, where the functions are assumed to be differentiable, and feed them
into the monolithic method as Dirichlet conditions.

The more straightforward way is to consider these Dirichlet conditions as time-dependent,
which is however addressed in a slightly more sophisticated way by the discretizations.
By the use of a parabolic problem, we have shown that such method would translate
the extrapolation order used on the boundaries into the prediction of the values on the
interface.

The second idea, which we have used in our simulations, is to use constant Dirichlet
conditions, which are simpler to implement and already present in most solvers of fluid
and structure. However, by using the same analytical tools from the first method, we
could not prove the stability of this method. While it could be that maybe another
analytical technique could prove its stability and prediction order as in the first method,
our simulations have provided with more evidence for this method’s unpracticality.

Still, the simulation’s results have hinted that, even if the method does not converge,
it is more well-behaved after over a dozen of time steps, when compared to a simple
extrapolation on the interface. Moreover, it maintains the interface solution’s qualitative
aspect. Quite surprisingly, the thickness of the tube used for the prediction had only a
small influence on our results. These small achievements prompt us to continue the study
of our method.

Indeed, the idea of a monolithic predictor offers quite a few opportunities for further

research. The most pressing is the simulation of the predictor that uses time-dependent
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Dirichlet conditions. Another important pursuit is the continuation of study in the stabil-
ity properties of our methods with more sophisticated PDEs and even FSI models. What
is more, we could test different boundary conditions, for instance Neumann or Robin, for
the predictor. Finally, we could analyse our methods further to understand the role of

the predictor’s thickness in the accuracy of the solutions.
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APPENDIX

The plots below are a continuation of those in Section 5.3.2.

Third coordinate

FIGURE 22 - Plots of the fluid’s pressure on the line, with At = 0.5 x 1073
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FIGURE 23 - Plots for the fluid’s displacement on the line, with At = 0.5 x 1073
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Fluid displacement at time 0.0015
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Fluid displacement at time 0.005
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Second coordinate First coordinate

Third coordinate

FIGURE 24 - Plots of the fluid’s velocity on the line, with At = 0.5 x 1073
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Second coordinate First coordinate

Second coordinate

FIGURE 25 - Plots of the fluid’s domain on the line, with At = 1073
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FIGURE 26 - Plots of the fluid’s velocity on the line, with At = 1073
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FIGURE 27 - Plots of the fluid’s pressure on the line, with At = 1073
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