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RESUMO

Esta tese apresenta condi¢Oes necessdrias e suficientes para a obtencdo de
hipoeliticidade global e resolubilidade global para uma classe de campos vetori-
ais definidos em um produto de grupos de Lie compactos. Tanto a hipoeliticidade
global quanto a resolubilidade global sao estudadas no sentido usual das funcdes
suaves, bem como em classes de Komatsu. Em vista da conjectura de Greenfield
e Wallach sobre a ndo existéncia de campos vetoriais globalmente hipoeliticos
sendo definidos no toro, é estudada uma classe de exemplos que podem ser con-

siderados como perturbacdes de ordem zero de campos vetoriais.

Palavras-chave: grupos compactos, hipoeliticidade global, resolubilidade glo-

bal, classes de Komatsu.



ABSTRACT

In this dissertation we present necessary and sufficient conditions to have global
hypoellipticity and global solvability for a class of vector fields defined in a prod-
uct of compact Lie groups. Both global hypoellipticity and solvability are studied
in the usual smooth sense as in the sense of Komatsu. Considering the Green-
field’s and Wallach’s conjecture, about the non—existence of globally hypoelliptic
vector fields out of tori, we also study classes of examples that can be considered

as zeros-order perturbations of our vector fields.

Keywords: compact groups, global hypoellipticity, global solvability, Komatsu

classes.
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Introduction

In this work we propose to study regularity of solution and solvability of vector fields (and
their perturbations by zero order terms) on a compact Lie group G. More precisely, denoting
by D'(G) the space of distributions on G and by P : D'(G) — D'(G) a first-order differential
operator, we are interested in establishing conditions that ensure that u is smooth whenever Pu
is smooth. This property is known as global hypoellipticity. In relation to the global solvability,
we want to identified under what conditions it is possible to guarantee that the equation Pu =
f € D'(G) has a solution, in the sense of distributions.

Both global hypoellipticity and global solvability have been widely studied in recent years,
especially in the n—dimensional torus T". See, for example, the impressive list of authors who
have published articles addressing these subjects: [6], [7], [10], [14], [24], [26], [27], [28], [30],
[31], [32] and references there in.

Even in the case of T", the investigation of these global properties for vector fields is a
challenging problem that still has open questions. Perhaps, the most famous and seemingly
far-off question of a solution is the Greenfield’s and Wallach’s conjecture, which states the
following: if a closed smooth orientable manifold admits a globally hypoelliptic vector field,
then this manifold is C'*°—diffeomorphic to a torus and this vector field is C'*°—conjugated to
a constant vector field whose coefficients satisfy a Diophantine condition (see [22] and [27]).
S. Greenfield and N. Wallach have proved this conjecture for compact Lie groups in [27]. The
conjecture it was also proved for compact manifolds of dimensions 2 and 3, and in some very
particular cases, which are described by G. Forni in [22] and by L. Flaminio, G. Forni, and F.
Rodriguez Hertz in [21].

Most of the studies that deal with the question of global hypoellipticity and global solvability
in the torus make use of Fourier analysis as the main tool to obtain results from conditions
imposed on the symbol or on the coefficients of the operator. For example, in [26], S. Greenfield

and N. Wallach use only the Fourier series in T" to characterize the global hypoellipticity of a
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differential operator through its symbol and the famous application: L = 0, + ad,, o € Ris
globally hypoelliptic in T? if, and only if, «v is a irrational non-Liouville number appears for the
first time. Therefore a natural way of extending such studies to other smooth manifolds would
be to consider manifolds where we have a Fourier analysis.

In this direction, based on ideas [28] and [40], J. Delgado and M. Ruzhansky [18] introduced
in compact smooth manifold M a notion of Fourier series for operators that commute with a
fixed elliptic operator. Using these ideas, a study of global hypoellipticity for such operators
was made in [15], [16], and [17]. The obvious disadvantage of this technique is that it works
only for operators that commute with a fixed elliptic operator.

In the particular case where the compact manifold is a Lie group G, there is a natural way
of introducing a Fourier analysis into G, see for example [11], [12], [13], [20], [36], [37], [38],
[39], and [41]. In this work we use the notation and results based on the book by M. Ruzhansky
and V. Turunen [35] to study the global hypoellipticity and global solvability of vector fields on
Lie groups.

In the development of this project we find natural to begin by extending the results of [26]
and [30] to a product of Lie groups G; x (5. In the case of constant coefficients, we observed
that the classic results of the torus could be easily recovered and that some interesting novelties
appeared. Next, by extending the theory of partial Fourier series to a product of Lie groups,
we recover the reduction in the normal form for operators of the form L = X; + a(x1)Xo,
where o« € C*°((G}) is a real-valued function and each X is a vector field on the Lie algebra
g;. Considering the Greenfield’s and Wallach’s conjecture, we also analyze the case L = X +
a(x1) Xy + q(z1, x2), where a« € C°(G4) and ¢ € C* (G x G).

After analyzing the solvability and hypoellipticity in the smooth sense, we decided to study
these same properties in the sense of Gevrey, which naturally led us to a generalization for the
Komatsu classes. In this way, we also study global solvability and global hypoellipticity in the
sense of Komatsu.

Outline of the dissertation:
This dissertation is organized as follows:

In Chapter 1 we introduce most of the notations and preliminary results concerning the
Fourier analysis on compact Lie groups. We also give a brief description of Komatsu classes of
Roumieu and Beurling types.

In Chapter 2 we study the global hypoellipticity and global solvability of a constant-co-
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efficient vector field defined in compact Lie groups. Moreover, motivated by the presented
examples and by Greenfield-Wallach conjecture, we give alternative ways to define global hy-
poellipticity to obtain examples in groups different from tori. We also investigate the properties
of the vector field with a perturbation by a zero-order term.

In Chapter 3 we study a class of vector fields with variable coefficients and give some condi-
tions that relate the global hypoellipticity and global solvability of these equations to constant-
coefficient operators.

In Chapter 4 we present a study of the global hypoellipticity of a vector field defined on
a product of a one-dimensional torus and a compact Lie group, which imaginary part of the
variable coefficient is not constant.

In Chapters 5 and 6 we extend the results of Chapters 2 and 3 to Komatsu classes.

In Appendix A we present precisely the partial Fourier series and in Appendix B we present

the proof of some auxiliary results.
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Chapter 1

Preliminaries

In this chapter we introduce most of the notations and preliminary results necessary for the
development of this dissertation. A presentation of these concepts and the demonstration of
all the results presented here can be found in the references [11], [12], [20] (chapters 1 and 2),
and [35] (chapters 7, 8 and 10).

1.1 Fourier analysis on compact Lie groups

1.1.1 Representations of topological groups

Let G be a topological group and let ¢ € Hom (G, Aut(V')) be a representation of G in
a vector space V. We say that ¢ is unitary when Aut(V') = U(V') and matrix unitary when
Aut(V') = U(n). The dimension of ¢ is denoted by

dy = dim ¢ := dim V.

A subspace W C V is said to be ¢-invariant if ¢(z)/W C W, for all x € G. When W
is ¢-invariant, we consider the restricted representation qb‘W € Hom (G, Aut(17)) defined by
¢|W(x)w := ¢(x)w. In particular, if ¢ is unitary then its restriction is also unitary.

Let {V;};cs be a family of mutually orthogonal subspaces of an inner product space V' and
write W = E%VJ If ¢; € Hom(G, Aut(V;)) and A; € End(V;) we define

je
¢ =P ¢; € Hom(G, Aut(W)) by ¢|,, = ¢;, j € J; and
JjeJ

A= @Aj € End(W) and Av:= Ajv,j € Jandv e V].

jeJ
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Definition 1.1. Let H be a Hilbert space and ¢ € Hom(G,U(H)) a unitary representation.
We say that ¢ is a strongly continuous representation if the map v € G — ¢(x)v € H is
continuous, for every v € H.

A strongly continuous representation ¢ is called topologically irreducible if the only closed

¢-invariant subspaces are the trivial ones ({0} and H).

Definition 1.2. An intertwining operator between the representations ¢ € Hom (G, Aut(V))
and v € Hom (G, Aut(W)), denoted A € Hom (¢, ), is a linear mapping A : V. — W such
that

Ap(z) =¢(x)A, VreG.

When the intertwining operator A is invertible, the representations ¢ and 1 are said to be

equivalent, and we denote this by ¢ ~ 1.

If ¢ € Hom(G,Aut(V)) and ¢ € Hom(G, Aut(1W)) are irreducible representations and
A € Hom(¢, ), then it is possible to prove that either A = 0 or A is invertible. For equivalent
irreducible unitary representations, the operator A is an isometric isomorphism.

When ¢ € Hom(G, Aut(V)) is an irreducible and finite-dimensional representation, by
Schur’s Lemma, we have Hom (¢, ¢) = CI = {\I; A € C}. In particular, if G is commutative,

all irreducible finite-dimensional representations of G are one-dimensional.

1.1.2 The Peter-Weyl decomposition

We say that GG is a compact group if G is compact as a topological space. In this case, there

exists an unique measure /i, called Haar measure of (5, that satisfies the following properties:
@) [, 1de = pa(G) =1

(i) [, f(x)dx = [, f(yx)dz, forally € G,

|tz = [ rane.

(iii) [, f(z)dz = [, f(xy)dz, forally € G;

where we write

From these properties we obtain

(iv) [, flz)de = [, f(a™")dx.



Preliminaries 16

We define the classical spaces L”(() as being the set of all complex-valued functions for
which the p-th power of their absolute value is integrable with respect to Haar measure 1.
The Haar measure of a product of compact groups is the product of the Haar measures of

each one of the compact groups and we may write

[ Fucn - /G /H F(y) dedy.

When G is compact, strongly continuous unitary representations can be written as direct
sum of finite-dimensional irreducible unitary representations. In particular, strongly continuous
irreducible unitary representations of compact groups are finite-dimensional.

We will denote by Rep(() the set of all continuous irreducible unitary representation of G.

Definition 1.3. The unitary dual G of a locally compact group G is the set consisting of all

equivalence classes of strongly continuous irreducible unitary representations of G.

When G is compact, we have
G = {[¢]; ¢ is a continuous irreducible unitary representation of G} .

For each equivalence class £ € G, there exists a unitary matrix representation ¢ € £ = [¢],
that is, there is a homomorphism ¢ = (¢;;)i%—; : G — U(m), where the functions ¢;; :
G — C are continuous.

Let ¢ = (¢4;)7"=, and 1 = (1s;){"_, be irreducible matrix unitary representations such that

¢ ~ 1, then there exists a unitary matrix A € C™*™ such that
o(r)A = AY(x), VxeQdG.

Lemma 1.4. Let G be a compact group. Let ¢ and 1) continuous irreducible matrix unitary

representations. Then

0, ) ,
(Di, Yre) 12y = ) zfgb (e (1.1)
;00 o =1

Let G be a compact group. We define its left and right regular representations 7y, mg :

G — U(L*(Q)) by

(mp(y) f)(z) == fly '),
(mr(y) f)(z) == f(zy),

for almost every x € G, with respect to .
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Theorem 1.5 (Peter-Weyl). Let G be a compact group. Then

B = {\/ dim¢ ¢y ; ¢ = (¢Z])1j 18] € é}?

is an orthonormal basis for L*(G), where we pick only one matrix unitary representation in
each class of equivalence.

Moreover, let ¢ = (gb”)ZJ . [¢] € G, then

H = span{oy;; 1 < j < dy} C L*(G)

2

is mwr-invariant and

¢ ~ WR‘H?‘J

dg
=P D

[¢leG =1

WRNGBG%

#leG =1
Fourier series on compact Lie groups

Definition 1.6. Let G be a compact group, f € L'(G), and ¢ = (qﬁl]) (0] € G. The

3,=1"
¢-Fourier coefficient of f is

/ f(z ) dx € Cloxds,

more precisely,

/ f (f ¢gz>L2(G

Observe that when ¢ = (¢;)7—; and 1) = (v;;)7"_, are irreducible matrix unitary equiva-

lent representations, there exists a unitary matrix U € C™*™ such that
W(z) = U'd(2)U, Va € G. (1.2)
So,
= [ ey de = [ r@@ @y de = | f@Uia@u e = U o,

that is, f(qﬁ) and f(z/J) are similar matrices.
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By the Peter-Weyl Theorem, a Fourier series presentation of f € L?(G) is given by

dez frbii) 12y 0 (2)sg

[6]eG b=l
Zdlm¢2f )ji(x
[eG b=l
Zdlmngr< 0) ().
[¢]€G

converging for almost every x € G, with respect to jig, as well in L?(G), and the Plancherel
identity takes the form
1132 = 3 dimo Tr (Flo) Fle)) = 3 dimo | F(0)]E (1.3)
¢l ¢l
where || Allgs := /Tr(A*A).
We point out that by (1.2) and properties of the trace of matrices, the equalities above are

independent of the representative of the equivalence class.

1.1.3 Linear Lie groups and Lie algebras

A Lie group is a set endowed with compatible structures of group and C'°*°-manifold, that
is, the group operation and the inversion are C'*°-functions. A linear Lie group is a Lie group
which is a closed subgroup of GL(d, C).

We will concentrate our study on linear Lie groups because the following characterization

of compact Lie groups that can be found in [9] (Chapter III, Theorem 4.1):
Proposition 1.7. Let G be a compact Lie group. Then there is some m € N such that G is
isomorphic to a subgroup of U(m).

Throughout this work we set dim G = d.
The fundamental tool for studying linear Lie groups is the matrix exponential map. We will

endow C4*4 = £(C?) with the operator norm

Y = |[Ylgay = sup [|[Ya|ca.

zllca<1

Definition 1.8. Let X € C%¥4. The exponential exp(X) € C™? is defined by the power series

— 1
exp(X) :== Z HX]“,
k=0

where X° := 1.
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Notice that this series converges in the Banach space C?*? because

o0

1
>l X leen <Zk,uxum el*leeh < oo,

k=0 k=0

Let X,Y € C%?and P € GL(n,C). Then

(1) If XY =Y X then
exp(X +Y) = exp(X) exp(Y).

In particular, exp : C4*¢ — GL(n, C) satisfies exp(—X) = exp(X)~1;
(ii) exp(X™) = exp(X)";
(iii) exp(X™) = exp(X)*;
(iv) exp(PXP™') = Pexp(X)P~

We have
HOM(R, GL(n, C)) = {t > exp(tX); X € C™},

where HOM(R, GL(n, C)) denotes the set of all continuous homomorphism from R to the
group GL(n, C).

Let A € C**? be a matrix such that ||[I — A| z(cay < 1. The logarithm

log(A kg A

is well defined and exp(log(A)) = A. Moreover, there exists 7 > 0 such that

| —

| X[ zcey <7 = log(exp(X)) = X.
Definition 1.9. A K-Lie algebra is a K-vector space V' endowed with a bilinear mapping |-, -|
satisfying
I. [a,a] =0, VaeV;
2. Jacobi identity: [a, [b, c]] + [b, [c,a]] + [¢,[a,b]] =0, Va,b,ce V.

A vector subspace W C 'V of a Lie algebra V is called a Lie subalgebra if [a,b] € W, for
all a,b e W.

A linear mapping A : V| — V; between Lie algebras V', V5 is called a Lie algebra homo-
morphism if [Aa, Ably, = Ala, by, for all a,b € V;.
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Let GG be a closed subgroup of GL(n, C). The R-vector space
Lie(G) = g := {X € C™% exp(tX) € G, Vt € R}.

is a Lie subalgebra of the R-Lie algebra Lieg(C¥*9) = gl(C?), with respect to the operation
[X,Y] = XY —YX, forall X,Y € C¥™,

Definition 1.10. Let G be a linear Lie group and g = £ie(G). The dimension of G is dim(G) :=

dim(g) = k, hence g =2 R” as a vector space.

The mapping X € g — exp(X) € G is a diffeomorphism in a small neighborhood of 0 € g.
Moreover, if G is compact and connected then exp(g) = G.

The Lie algebra g can be identified with the tangent space of GG at the identity / € G. Using
left-translations, g can be identified with the set of left-invariant vector fields on GG, and vector

fields have a natural interpretation as first-order partial differential operators on G.

Definition 1.11. Forx € G, X € gand f € C*(Q), define

L f(2) = 5 f(wesp(tX)

t=0

Notice that the operator L is left-invariant. Indeed,

m(y)Lx f(x) = Lx f(y~'x)

= resp(iX))

= S ept)|
= Lxm(y)f(x),

forall z,y € G.

Where there is no possibility of ambiguous meaning, we will write only X f instead of Ly f.

Definition 1.12. Let GG, H be linear Lie groups with respective Lie algebras g, Y. The differen-
tial homomorphism of v € HOM(G, H) is the mapping i)' = £ie(v) : ¢ — b defined by
, d
Y(X) = So(exp(iX))

t=0
and satisfies

Y(exp(tX)) = exp(t'(X)),
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that is, the following diagram commutes

G
exp ]
g

Moreover, ' is a Lie algebra homomorphism.

¥

_—

H
]exp
b

-

wl

The adjoint representation of a linear Lie group G is the mapping Ad € HOM(G, Aut(g))
defined by
Ad(A)X = AXA™,

where A € G and G € g.
The adjoint representation of the Lie algebra g of a linear Lie group G is the differential

representation

ad = Ad' : g — Lie(Aut(g)) = gl(g),

that is, ad(X) := Ad'(X), so that
2d(X)Y = Ad'(X)Y = [X,Y].

Next we construct a natural associative algebra U(g) generated by g modulo an ideal, en-
abling embedding g into U/ (g). Recall that g can be interpreted as the vector space of first-order
left-translation invariant partial differential operators on GG. Consequently, I/(g) can be inter-
preted as the vector space of finite-order left-translation invariant partial differential operators

on (G.

Definition 1.13. Let g be a K-Lie algebra. Let

T = @@mg
m=0

be the tensor product algebra of g, where Qg denotes the m-fold tensor product g @ - - - ® g,

that is, T is the linear span of the elements of the form

M Kpn

>\001 + Z Z /\kamkl QK- kama

m=1 k=1
where 1 is the formal unit element of T, Ak € K, Xy € g and M, K,,, € Z; the product of

T is begotten by the tensor product, that is,

(@ 2X,)V1®-Y)=X1®- X718 Y,
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is extended to a unique bilinear mapping T X T — T. Let J be the (two-sided) ideal in T
spanned by the set
O={XY-YX-[X,Y]: XY eg}

The quotient algebra
Ug) :=T/J

is called the universal enveloping algebra of g.

Definition 1.14. The Killing form of the Lie algebra g is the bilinear mapping B : g X g — K,
defined by
B(X,Y) :=Tr(ad(X)ad(Y)).

A (R or C)-Lie algebra g is called semisimple if its Killing form is non-degenerate, that is, if
VX € g\{0}FY € g; B(X,Y) #0;

equivalently, B is non-degenerate if the matrix (B(X;, X;)){._, is invertible, where {X;}9_, C
g is a vector space basis.

A connected linear Lie group is called semisimple if its Lie algebra is semisimple.

The Killing form of the Lie algebra of a compact linear Lie group G is negative semi-
definite, i.e., B(X, X) < 0, for all X € g. On the other hand, if the Killing form of a Lie
group is negative definite, i.e., B(X,X) < 0 whenever X # 0, then the group is compact
and semisimple. We point out that there are compact groups which their Killing form is not
negative definite. For instance, the Killing form of the torus is identically zero, because of its
commutativity.

Let g be a semisimple K-Lie algebra with a vector space basis { X }?:1 C g. Let B be the
Killing form of g, and define the matrix R € K¥? by R,; := B(X;, X;). Let

so that { X}4_, is another vector space basis for g. Then the Casimir element €2 € U(g) of g is

defined by

d
0= Z X, X",
=1
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Theorem 1.15. The Casimir element of a finite-dimensional semisimple K-Lie algebra g is

independent of the choice of the vector space basis { X }?:1 C g. Moreover,
DQ =QD,
forall D € U(g).

In the case where g is semisimple, we can choose a convenient basis {X j}?zl such that

B(X;, X;) = —0;;. In this case, R = —I and the Casimir element is written as

d
Q=-> X7
=1

The Casimir element of a linear semisimple Lie group is also denoted by
Lo :=QecelU(G), (1.4)

and viewed as a second-order partial differential operator on G is also called the Laplace oper-
ator on G. The Laplace operator L is a negative definite bi-invariant operator on G. If G is
equipped with the unique (up to a constant) bi-invariant Riemannian metric, L is its Laplace-

Beltrami operator.

Remark 1.16. In the case where g is not semisimple we can construct the Laplace-Beltrami

operator as follows. By Theorem 3.6.2 of [19], g can be written as
g=9a3

where ¢’ is a Lie subalgebra of g on which the Killing form is negative definite, and j is the
kernel of the Killing form. Let (-,-) ¢ be the inner product induced by the Killing form and
let {Y1,...,Yy} be a orthonormal basis of g'. For 3, choose any inner product Ad—invariant
and consider {Z1, ... Zy,} an orthonormal basis of 3. Observe that the sum of these inner

products is an inner product Ad—invariant on g, denoted by (-,-)_, and we have that B =

g)
{MM,....Ya, Z4, ..., Zn} is an orthonormal basis of g. One can shows that

d m
Lo=-) YP=) 7
i=1 j=1

is the Laplacian-Beltrami operator on G for the metric induced by (-, -) o (see [34]). Notice that

Lo=Q— izj?,
j=1

where §Q is the Casimir element of g, which implies that L commutes with any element of g.
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Let ¢ = (¢ij)?;:1 € G, [¢] € G and define

HO = span{¢;;; 1 <1,j < dy}.
Theorem 1.17. For every [¢] € G, the space H® is an eigenspace of L and
—Labij = vig¢ij, 1 <14,5 < dy,
Jor some vy > 0.

Notice that 4 is independent of the choice of the representative of [¢], that is, if ¢ =

(Yre)zi € 4], then
Lo = vigre, 1< k0 < dy.

1.1.4 Function spaces

Let G be a compact Lie group of dimension d and {X;}%, a basis of its Lie algebra. For
a multi-index a = (v, o, ..., q) € NI, we define the left-invariant differential operator of

order ||

0” ::}/1"'Y|a|7

withY; € {X;}¢,,1 < j < |afand > 1 = a;foreveryl < k < d. It means that
J:Y=Xp
0 is a composition of left-invariant derivatives with respect to vector X1, ..., X, such that

each X, enters 0” exactly oy, times. We do not specify in the notation 9* the order of vectors

Xy, ..., Xy, but this will not be relevant in the arguments that we will use in this work.

Proposition 1.18. Let G be a compact Lie group of dimension d. The following statements are

equivalent:
(i) f e CHG);
(i) 9°f € C(Q) forall |o| < k;
(iii) Lf € C(G) forall L € U(g) of degree less or equal k.

Proposition 1.19. Let G be a compact Lie group of dimension d. The following statements are

equivalent:

(i) [ e C®(G);
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(ii) 0°f € C(G) for all o € N¢;
(iii) (—Le)*f € C(G) forall k € Ny;
(iv) Lf € C(G) forall L € U(g).

We equipped C*°((G) with the usual Fréchet space topology defined by seminorms p,,(f) =
max |0% f(z)|. Thus, the convergence on C'°(() is just the uniform convergence of functions
and all their derivatives: f; — f in C*(G) if 0% fi(z) — 0“f(z), for all x € G, due to the
compactness of G.

For all ¢ € Rep(G), we have H? C C*°(G). It follows from Theorem 1.17 that ¢;; €
C>®(G), forall 1 <1i,5 < dy.

Definition 1.20. We define the space of distributions D' (G) as the space of all continuous linear
functionals on C*(G), in which we consider the notion of usual convergence: for u;,u €
D'(G), we write u; — win D'(G) as j — oo if uj(p) = u(y) in C as j — oo, for all

v € C™(Q).

For v € D'(G) and ¢ € C*°(G), we write

If u € LP(G), 1 < p < oo, we can identify u with a distribution in D’(G) (which continues to

be denoted by u) in a canonical way by

(1,0 = /G w(@)o(z) d.

In particular, if u; — w in LP(G), then u; — u in D'(G).

For Y € g, we can differentiate u € D’'(G) with respect to the vector field Y
Yu,)g = —(u,Yo)g,
for all ¢ € C*°(G). Similarly, for a € Ny, we define
(0%u, ) = (=1)1Nu, 0%0)
for all ¢ € C*(G).

Definition 1.21. The space M(@ ) consists of all mappings

F:G— ) L, c|omm

[¢led m=1
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satisfying F([¢]) € L(Hy), for every ¢ € G. With respect to the matrix representations, we
have F([¢]) € Cls>do,
The space LQ((/J\) consists of all mappings F' € M(@) such that

I1FI 26 = D dim(@)[[F([¢])llis < oo,
[¢leC

where

1E([@])lles = v/ Te(F([6) F ([0])).

The space L2(G) is a Hilbert space with the inner product
(E,F) 2= ) dim($)Tr(E([g) F([0])")-
[¢leG

v . . d .
From now on, for every [¢] € G, we choose a representative matrix ¢ = (¢;;);—,. Notice

that for any f € L*(G), we can define
f: G - gomm
m=1
(9] = (o).

and by the Plancherel formula on Proposition 1.3, we have f € L2((A}). We have the Parseval’s
identity
(.91 = 2 dim(o) Tr (F0)5(0)) = (F.3) ,
[¢led
Theorem 1.22. Let G be a compact Lie group. The Fourier transform f — Fqf = ]?deﬁnes a

surjective isometry L*(G) — LQ(G). The inverse Fourier transform is given by

[eG
dg
_ Z dim(¢) Z H([#])mno ()
[¢leC myn=1

and we have
FoloFo =g and FgoFg =1dp g
Definition 1.23. Let G be a compact Lie group, u € D'(G) and ¢ = (@])Z o (9] € G. The
¢-Fourier coefficient of u is
(o) = (u, ¢")q € Clox,
that is,

u Qb)z] - <u7¢_ﬂ>c
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Notice that this definition agrees with Definition 1.6 when the distribution comes from an
L*(@G) function.
For u € D'(G), we have

de
w="Y dim(o)Tr(@(6)0) = > dim(#) > (6)ijy:
[¢leG [¢]eC ij=1

where the convergence is in the distribution sense.

Let L be the Laplace-Beltrami operator of GG. For each [¢] € @, its matrix elements are
eigenfunctions of L correspondent to the same eigenvalue that we will denote by —/4, where
Vg = 0. Thus

—Laij(x) = vg¢i(x), foralll <4, 5 < dy, (1.5)

and we will denote by
1/2
(@) = (1+ 1)

the eigenvalues of (I — Lg)'/2.

Proposition 1.24. Let G be a compact Lie group. There exists C' > 0 such that
Vg < (9)" < Oy,
for all non-trivial [¢] € G.

Proposition 1.25. There exists a constant C' > 0 such that the inequality

dim G

dim(¢) < C{¢) =

holds for all ¢ € Rep(G). Moreover, for every integer M > % there exists Cyy > 0 such

that
6isll () < Car(d)™, (1.6)

forall[¢) € G, 1<i,j <dg

Proposition 1.26. Let G be a compact Lie group. Then

d o die) <o = > g
[¢leC

Theorem 1.27. Let G be a compact Lie group. The following statements are equivalent:

(i) [ € C®G),



Preliminaries 28

(ii) for each N > 0, there exists C'y > 0 such that
17 (@)l < On ()™,
forall [¢] € G;
(iii) for each N > 0, there exists C'y > 0 such that
F(8)i] < Cn(d) ™™,
forall[§] € G, 1 <i,j <d,
Theorem 1.28. Let G be a compact Lie group. The following statements are equivalent:
(i) u e D'(G);
(ii) there exist C, N > 0 such that
[i(¢)llss < C(0)",
forall [¢] € G;
(iii) there exist C', N > 0 such that
()] < C(o)",
forall[§] € G, 1 <i,j <d,

Definition 1.29. Let G be a compact Lie group and A : C*(G) — C*(G) be a continuous
linear operator. We define the symbol of the operator A in v € G and ¢ € Rep(G), ¢ =
(65)i5_, as

oa(z,9) = ¢(x)"(Ag)(x) € Clox,
where (Ag)(x);; := (Api;)(x), forall 1 < 4,5 < dy.

For instance, if we take A = — L, we get

0r6(2,0) = 6(2)"(=Laod) () = ¢(2)" (1g)0) (%) = V(g)1da,.

Theorem 1.30. Let 0 4 be the symbol of a continuous linear operator A : C*°(G) — C*(G).
Then

Af(@) = Y dim(@)Tr (6(2) 04z, 0)](0))
[¢leG

forevery f € C*(G) and x € G.
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Notice that the formula above is independent of the choice of the representative. Indeed, if

¢ ~ 1) are matrix representations, there exists a unitary matrix U such that ¢(z) = U*(z)U

o~

for all z € G. By Remark 1.2 we have f(¢) = U*y(x)U and by the formula of the symbol of

the operator A,
oa(z,¢) = d(x)"(A9)(z) = (U™ (x) U)(U"AYU)(x)) = U'oa(z, ¥)U.
Thus Tr <¢(;c)*a,4(m, ¢)f(¢)) —Tr (@D(x)*UA(x,w)f(@b)), forall z € G.

When A : C*(G) — C*(G) is a continuous linear left-invariant operator, that is An(y) =
71 (y)A, for all y € GG, we have that 0 4 is independent of € G and

~

Af(¢) = 0a() F (),

forall f € C°(G) and [¢] € G. By duality, this remains true for all f € D'(G). For instance,

by relation (1.5), we obtain

~

Laf(9) = —vg f(9), (1.7)

forall f € D'(G) and [¢] € G.

Proposition 1.31. Ler A, B : C*(G) — C*(G) be continuous linear operators and \ € C.
Then for all = € G and [¢] € G holds:

1. O’A+B<£L‘,¢) :O'A(x7¢)+03($7¢);
2. O',\A<HZ'7¢) = )\UA(ma(b);
3. If B is a left-invariant operator, then o sp(x, ) = oa(x,p)op(P).

Let Y € g. Notice that 7Y is a left-invariant operator and
(Y 1.9)0) = | (@Y Pla)glo) do
el
[ Gt aexp ()
=1 | —f(rex
. dt P

g(x)dx

t=0

=g /G f(2)9(@ oxp (7)) da
i /G (@) (Y 9) (@) de

= <f7 iY9>L2(G)7

t=0

that is, the operator Y is symmetric on L%(G). Hence, for all [¢] € G we can choose a

representative ¢ such that o,y (¢) is a diagonal matrix, with entries \,,(¢) € R, 1 < m <
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d4, which follows because symmetric matrices can be diagonalized by unitary matrices. By

Proposition 1.31,

UY(¢)mn = Z/\m(gb)5mnu )\m e R. (18)

Notice that {\,,(¢) ile are the eigenvalues of 0,y (¢) and then are independent of the choice

of the representative, since the symbol of equivalent representations are similar matrices. We

can consider B = {Y},---,Y,} an orthonormal basis of g with
Y
}/1 = T
Y]]

where the inner product is took as in Remark 1.16. By the properties of Laplacian operator, we
have that [L¢ — Y7, Y] = 0, so we can diagonalize simultaneously o_y:2(¢) and 0_z,_y2) (),

for all [¢] € G. Notice that
Agllda, = 06 = 0_(26-vp)(9) + 0_y2(9),
where A\(¢] > 0. Since these two operators are positives and Y is left-invariant, we obtain that
Aol = — (03 () mm)?,

forall 1 < m < dg4. By (1.8), we have

L+ Apgp 2 Apg) 2

Thus,
Am ()] < [[Y[{9), (1.9)

for all 1 < m < dy. In order to simplify the notation, throughout the text we will assume that

the vector fields are normalized.

Proposition 1.32. Let G be a compact group, [p] € G and {Y1,--,Yq} be a basis for g. There

exists Co > 0 such that
looe (@)llop < Co™ (), Vo € NG, (1.10)
From Chapter 2 of [23], we have

1002 (@)llop < llo92 () l1s < v/dgllT9e(9) l0p- (L.11)
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1.2 Komatsu classes

In the previous section we have characterized smooth functions on G. The next natural
class of functions to study is the class of analytic functions on G, i.e., the class C¥(G) of
smooth functions ¢ that satisfies the following property: for every h > 0, there exists C}, > 0
such that

10%¢|| 1~ < CRal!, o€ Nb.

Since C¥(G) € C*(G), many authors consider intermediary classes of functions between
C¥(G) and C*(G) (see [11, [2], [3], [4], [8], [25]). An example of such class is the Gevrey
class of Roumieu type v*((G) of order s, with s > 1 described as follow: ¢ € v*(G) if for every

h > 0, there exists Cj, > 0 such that
10%¢|| . < Chal!®, o e NI

When 1 < 51 < s, we have C¥(G) C +*1(G) € +*2(G) € C*(G). Notice that v}(G) =
CY(@G).

In [11], A. Dasgupta and M. Ruzhansky have characterized the Gevrey class of functions in
terms of their Fourier coefficients.

In this dissertation we will use the characterization given by A. Dasgupta and M. Ruzhansky
in [12] to extend our results to the framework of Komatsu classes, which are also classes of
functions between C¥(G) and C*°(G). We point out that our examples will be given mainly in
Gevrey classes, which are a particular example of Komatsu classes.

Let { M} }ren, be a sequence of positive numbers such that there exist H > 0 and A > 1

satisfying

M.0) My =1

(M.1) (stability) My, < AH*M,, k=0,1,2,....
(M.2) My, < AH*M?, k=0,1,2,....

(M.3) 3¢,C > 0 such that k! < C¢*M,, for all k € N,.

MTMS < MrJrs

M.4) rlos! = (r+4s)’

Vr,s € Np.
We will assume also the logarithmic convexity:

(LC) M2 < My 1My, k=1,2,3,....
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Given any sequence { M} that satisfies (M.0)—(M.3), there exists an alternative sequence

that satisfies the logarithmic convexity and defines the same classes that we will study. So

assuming (LC) does not restrict the generality compared to (M.0)—(M.3).

From (M.0) and (LC) we have M}, < M1, for all k£ € N, that is, { M} is a non-decreasing

sequence. Moreover, for £ < n we have

The condition (M.2) is equivalent to M, < AH* 01<ni£1k My Mj._,, (see [33], Lemma 5.3).
>q=

1.2.1 Associated function

Given a sequence { M}, } we define the associated function as

k

M(r) := sup logr— r >0,

)
keNy Mk

and M (0) := 0. Notice that )M is a non-decreasing function.

Example 1.33. Let s > 1 and consider My = (k!)*. This sequence satisfies the conditions

above and we have

M(r) ~ ri/s,

In the next propositions we present some technical results of the associated function that we

will use throughout this chapter.

Follow by the definition that for every » > 0 we have

.. My

exp{—M(r)} = klélgo =
-k

exp{M(r)} = sup —
p{M1(r)} = sup -

Proposition 1.34. For every r, s > 0 we have
(i) exp{~M(r)} exp{~M(s)} < exp {~M (52}
(i1) exp{M(r)} exp{M(s)} < Aexp {M (H(r +s))}
Proof. (i) Letr,s > 0. By (1.12) we obtain

exp{—M(r)} exp{—M(s)} < —

(1.12)

(1.13)
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for all j,¢ € Ny. Let k € Ny. Thus for / = k — 7 we have

SO

k k rdgh=i r+ s)k
2% exp{ M (r)} exp{M(s)} = Z (f) exp{M(r)}exp{M(s)} > Z (k> T ( ;\}k) ,

that is,

for all k € Ny. Therefore

exp{—M(r)} exp{—M(s)} < exp {—M ( : ) } |

(ii) Let r, s > 0. We have M, < AH* MM, and r*s* < (r + s)k*¢, for all k, ¢ € Ny.
Thus

rk Sf rk‘sf H(,r + S)k?-f—f (H(,r + S))k"ﬁ‘(
log — + log — = lo <lopgA———— =log A +log ———
S Pl VA V0 V At R VA s & M

<logA+ M(H(r+s)).

For every ¢ € Ny fixed we have

k ¢ ¢
logr— <log A+ M(H(r+s)) —logs— = M(r) glogA—l—M(H(r—l—s))—logS—.
M, M, M,

Now,
¢

logj\s/[— <logA+ M(H(r+s))—M(r), ¥le&Ny,
¢

which implies that
M(s) <log A+ M(H(r+s)) — M(r).

By the properties of the exponential function we obtain

exp{M(r)} exp{M(s)} < Aexp {M (H(r + 5))}

Proposition 1.35. For everyr,s > 0 andt € Ny we have
(i) rtexp{—M(sr)} < A(Hs )" Myexp{—M(H 'sr)};

(ii) r*exp{M(sr)} < As™*M;exp{M (Hsr)}.
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Proof. (i) Letr,s,t > 0. We have

Mk _ Mk
t t ot
exp{-M(sr)} £ 't~ M v
Since M), < AH*M, M, _,, for all k > t, we obtain
M. M,
t —t g7k k=t —1 77\t k—t
r eXp{—M(sr)} S As™"H MtW = A(S H) th, Vk Z t,
Therefore
rtexp{—M(sr)} < A (Hs_l)t M;exp{—M(H 'sr)}.
(77) Let r,s,t > 0. We have
k ke kAt (sr)k+t
rtexp{M (sr)} = ' su or = su L—s_ su
piM(sr)} k@g My, kel\% M;, kel\% M,
Since M., < AH** M, M,, we obtain
H k+t H J4
rtexp{M(sr)} < As™'M, sup (Hsr) ™ < As™'M, sup (Hor) :
keNp k—+t £eNy V4

Therefore

rtexp{M (sr)} < As~'M;exp{M (Hsr)}.
U

Proposition 1.36. Let G be a compact Lie group. For every N, L, > 0 there exists C' > 0

such that
(N exp{—0M(L(£))} < C,

forall [¢] € G.

Proof. Let N, L,0 > 0. Then

4
(O exp{=BM(L(E)} = ()" (exp{=MLED) < O et
for all k € Njy. In particular, take kg € Ny such that ko > N. So,

) )
(6 exp{—SM(L(EN)} < (V0 i Ml _

Lk05 - Lk05
O]
Proposition 1.37. Let G be a compact Lie group and let L > 0. Then
exp {—5M (L{€)} < VAexp{-M (L(¢))}, (1.14)

~ L
forall [€] € G, where Ly = T
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Proof. Notice that

1/2 1/2

1 —inf < inf
et MIEON = 1 ey < B ey

By the property (M.2), we have
My, < AH** M.
This implies

exp{—LM(L())} < mffHMf VA inf 2 A exp{—M(L(€))},
(L(§))" (eNy (@)

H

where Lo, = %

1.2.2 Komatsu class of Roumieu type

Definition 1.38. The Komatsu class of Roumieu type I'(r;,3(G) is the space of all complex-

valued C'*° functions f on G such that there exist h > 0 and C > 0 satisfying
Haaf“L?(G) < Ch‘a|M|a|, VYa € Ng.

In the definition above, we could take the L°°-norm and obtain the same space. The elements
of I';rr,1(G) are often called ultradifferentiable functions. Notice that by (M.3) we have that

I'¢a1,3(G) contains the analytic functions on G.

Example 1.39. Let G be a compact Lie group and ¢ = (gzﬁzj)z o (9] € G. Let us show that
¢i; € U'ary (G) for all sequences { M, }ren, satisfying the conditions (M.0)—(M.3).
Let 3 € Ng, so

|aﬂ¢ij (z)] = Z Cie(T) T8 (D)s;

<Z|§w Nlogs (@)

< C(0) " 795 (6)llop

(1.10)

< ()™ (Co(a))"!,
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where M > %. Take h = Co(¢) and by the fact that My, > 1, for all k € Ny, we conclude
that
10%65ll 12y < CHIPIMg

and then ¢;; € I' a3 (G).

Theorem 1.40. Assume conditions (M.0)—(M.3). The following statements about a function

f € C®(G) are equivalent:

() f €Ly (G);

(ii) There exist constants C' > 0, L > 0 such that
17 (#)llas < Cexp{—M(L(¢)))}, VI¢] € G;
(iii) There exist constants C' > 0, L > 0 such that

F(6)ij] < Cexp{—M(L{¢)))}, V[¢] € G, 1<1i,j<dy

Proof. The equivalence (i) < (ii) can be found on [12], Theorem 2.4, page 8487. Let us prove

that (i7) < (i77). The first implication is trivial because

1F(0)ii] < 11 F(6)]]ss,

forall [¢] € G, 1 < i,j < ds. Conversely, we have

)llas = Z (¢

i,7=1
do

< Z C? exp{—2M (L(¢))}

1,7=1

= d3C” exp{—2M (L{¢))},

that is,

1F(@)llss < Cdyexp{—M(L{$))}.

By Proposition 1.25, we have

1F(0)]las < C{o)™ exp{—M(L{$))},
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where N > %. Using now Proposition 1.36 and 1.37 we obtain

I F(@)llss < Clo)" exp{~M(L())}
= C ((6)" exp {~EM(L(6))} ) exp { 1M (L(6))}

< Cexp{—M(Ly{¢))}

We also can characterise the elements of the dual Ff{ My} (G) by its Fourier coefficients.

Theorem 1.41. Let I, ,(G) the dual space of U'(y,}(G). The following statements about a

linear functional defined on I;;,3(G) are equivalent:
(i) u € F{Mk}<G>'

(ii) For every B > 0 there exists Kg > 0 such that
[u(@)llus < Kpexp{M(B((¢)))}, VI[¢] € G;

(iii) For every B > ( there exists Kg > 0 such that

@(0)ij| < Kpexp{M(B($))}, V¢l € G, 1<4,j<d,

Proof. The equivalence (i) < (ii) can be found on [12], Theorem 2.4, page 8488. Let us prove

that (ii) < (i7). The first implication is trivial because

[w(¢)ij| < 1|T()]las,

for all [¢] € @, 1 <4,7 < dg. On the other hand,

||HS Z u(o Z]

z]l

< ZK exp{2M(B(¢))}

1,j=1

= diKé exp{2M (B(¢))},

that is, for all B > 0, there exists K5 > 0 such that

[u(@)llus < do K exp{M(B($))}.
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By Proposition 1.25, we have dy < C <¢>M for some M > % and by Proposition 1.36, for

all B > 0 there exists C'g such that

()" < Cpexp{M(B(¢))},

for all [¢] € G. By Proposition 1.37,

[@(0)llss < K exp{2M (B(¢))} < K exp{M(B5(¢))},

where B = BH. Therefore u € Ly (G). O

1.2.3 Komatsu class of Beurling type

Next, to define Komatsu classes of Beurling type, we have to change the condition (M.3) by

the following one:
(M.3%) V¢ > 0, 3C, such that k! < C,0* M, for all k € N,.
Notice that the condition (M.3’) implies the condition (M.3).

Definition 1.42. The Komatsu class of Beurling type T'(a1,\(G) is the space of C* functions f

on G such that for every h > 0 there exists C, > 0 such that we have
10° fll z2(e) < Chb!® M q), Vo € NG,

Theorem 1.43. Assume conditions (M.0)—(M.3’). The following statements about a function

f € C>(G) are equivalent:
(i) ¢ € Loy (G);

(ii) For every L > ( there exists C'y, > 0 such that

~ ~

1 (@)llus < Crexp{-=M(L((¢)))}, VI[¢] € G;
(iii) For every L > 0 there exists Cy, > 0 such that

1F(6)i] < Crexp{—M(L(¢)))}, V]¢] € G, 1<i,j<dy.

dg
ij=1

[¢] € G. We have ¢ij € L'y (G)
for all sequences { My }ren, satisfying the conditions (M.0)—(M.3’) because

0, if & # o,

iéin(;jm7 lff = Qba

and then ¢;; satisfies the statement (iii) of the previous theorem.

Example 1.44. Let G be a compact group and ¢ = (¢;;)

(g;(g)mn = <¢ij7£nm>L2(G) =
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Theorem 1.45. Let F’( Mk)(G) the dual space of I (v, )(G). The following statements about a

linear functional defined on I 5, )(G) are equivalent:
(i) u €Ty (G);

(ii) There exist K, B > 0 such that
[i@(g) s < K exp{M(B((¢)))}, V[¢] € G;

(iii) There exist K, B > 0 such that

[@(6);] < Kexp{M(B(#))}, Vg€ G, 1<i,j<d,
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Chapter 2

Constant coefficient vector fields

Let G; and G be compact Lie groups, G’ := G X G, and consider the linear operator
L: C*(G) — C*(QG) defined by
L= X1 + CXQ,

where X; € g1, Xs € go and ¢ € C. Thus, for each u € C*(G) we have

Lu(xy, z9) := Xju(xy, x2) + cXou(xq, x2)

d d
= —u(xyexp(tXy),22)|  +c—u(z1, z2exp(sXs))
dt t=0 dS s=0

The operator L extends to distributions in a natural way, that is, if u € D'(G), then

(Lu, @) = —(u, L), @€ C(G).

In this chapter, we present necessary and sufficient conditions for the vector field L to be
globally hypoelliptic and to be globally solvable. After that, we present examples recover-
ing known results in the torus and presenting examples in T! x S and S® x S®. Because of
the presented examples and by the validity of Greenfield-Wallach conjecture on compact Lie
groups, we investigate the global properties of perturbations of L by zero-order terms and we
also present weaker notions of global hypoellipticity.

The main tool that we will use in the development of our results is the partial Fourier series
with respect to each one of the Lie groups. The details and main results about partial Fourier

series on compact Lie groups can be found on Appendix A.
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2.1 Global hypoellipticity

Definition 2.1. Let G be a compact Lie group. We say that an operator P : D'(G) — D'(G) is
globally hypoelliptic if the conditions u € D'(G) and Pu € C*(G) imply that uw € C*(G).

Consider the equation
Lu(xy, x9) = Xqu(zy, 22) + cXou(zy, x2) = f(x1, 22),
where f € C*°(G). For each [¢] € G1, we can choose a representative & € Rep(G1) such that

0Xx, (g)mn = ZAm(f)émna 1< m,n < d§7

where \,,,(§) € R for all [¢] € Giand1 < m < d¢ (see Proposition 1.31). Similarly, for each

(] € é\g, we can choose a representative 77 € Rep(G5) such that

JX? (n)TS = ?:/"LT(U)(;TS; 1 S 7”, S S d']’]7

where p,.(n) € R for all [n)] € Goand1<r < d,.
Suppose that u € C°°(G). Thus, taking the partial Fourier coefficient with respect to the

first variable at x5 € (G5 (see Definitions A.1 and A.2) we obtain

F(€ 22) = Lu(€, x2)
:/ Lu(xy, x2)&(x1)" day
Gy

= Xqu(zy, x2)&(x1)  dxy + ¢ Xou(zy, x2)&E(x1)" day
G1 Gl

= @(ﬁ, xg) + CXQ/ u(x, x2)&(21)" day
G

= 0, (E)A(E, m3) + XU, ).

Hence, for each 25 € G5, we have that f({ , Tp) € Cdexde and

-~

f(é.a x?)mn - ZAm(g)a(£7x2)mn + CXQ@(&, x2)mna 1 S m,n S d£

-~

Now, taking the Fourier coefficient of f (&, )., with respect to the second variable, we obtain

~

?(67 77)mn - f(£7 x2>mn77(x2)* de

G2

_ /G (Do (E)AE, 22 + XoE, )1 (2)° it

= 7/>\m(€) L a(ga $2)mn77($2)* d$2 +c G X2a(€7 x?)mnn(an)* d.ﬁEg

= Z>‘m(§) i(é: n)mn + cox, (77) i(éu n)mn‘
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Thus, f(£,7)mn € C*% and

76 M, = i) + () BE Dy 1 <15 < dy, @.1)

From this we can conclude that

/Af(f, M) mn,. = 0, whenever \,,(§) + cu,(n) = 0. (2.2)

Moreover, if A, (£) + cu-(n) # 0, then

1
i(Am (&) + cpr(n))
We begin by presenting the following necessary condition for global hypoellipticity of the

vector field L = X + cXo.

ﬁ(fa n)mnrs = ?(57 77)mm~ (2.3)

Proposition 2.2. Suppose that the set
N ={([¢), [) € G1 x Ga; Am(&) + cptr(n) = 0, for some 1 <m < de,1 <7 <dy} (24)
has infinitely many elements. Then there exists u € D'(G) \ C*°(G) such that
Lu = 0.
In particular, L is not globally hypoelliptic.

Proof. Consider the sequence

L, if A (&) + cpn(n) = 0,

0, otherwise.

i(g, n)mnm =

Notice that for any [¢] € é’\l, n] € é\g 1 <m,n<d¢and 1 <r s <d, wehave

|5(£7 Mmnes| < (&) + (M)

Thus by the characterization of distributions by Fourier coefficients (Theorem A.3) we conclude

that u € D'(G), where

de dy
Z Z d{d Z Z 577 mnrsgnmnsr

[ﬂeGl [n] €G2 m,n=1rs=1
Since there exist infinitely many representations such that a(g )mn.. = 1, it follows from

Theorem A.3 that u ¢ C°°(G). Furthermore, we have

L€, )y, = i () + 16 (1)) B(E M)y = O,

for all [¢] € é\l, n] € é;, 1 <m < d¢, 1 <r <d, Then, by Plancherel formula (1.3), we
conclude that Lu = 0. L]



Constant coefficient vector fields 44

Theorem 2.3. The operator L = X + cXy is globally hypoelliptic if and only if the following

conditions are satisfied:
1. The set
N = {(€). 1)) € G x Gy An(€) + cp) = 0, for some 1 < m < de,1 <7 < dy}
is finite.
2. AC, M > 0 such that
() + cpr ()] = CE) + ()™, 2.5)
forall [€] € é\h [n] € é\g, 1 <m <de, 1 <r<d,, whenever \,,(§) + cu(n) # 0.

Proof. ( <= ) Suppose that Lu = f € C*°(G) for some u € D'(G). Let us prove that
u € C*(@Q). Since the set NV is finite, there exists C' > 0 such that

‘ ﬁ(f? n)mn'rs

<,

forall ([¢],[n]) e N, 1 <m,n<d 1<rs<d, Let N € N. Then, for ([¢],[n]) € N, we

have

< CU&) + N (&) + )™
< Oy (&) + )~

| ﬁ(é’ 77>mnrs

where Cy = B {C((&) + (n))"'}. On the other hand, if ([¢], [7]) ¢ N, by (2.3) and (2.5)
»[M)) €

we obtain

1 A

< CHE) + )M F(E M,

| 5(57 n)mnrs =

Since f € C*(G), there exists Cy, s > 0 such that

| (&M < Crvanr (6) + ()"0

Thus,

E D] € € Cvaar (€) + ) () + ()7
= CH((E) + )™,
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where C'y = C~'Cyy . Hence, if ([£], [n]) ¢ N we conclude that

\ﬁ(&ﬁ)mms < ON((E) + <77>)7N-

Setting C'y := max{C’y, C'y }, we have

‘6(67 U)mnrs S CN(<€> + <77>)7N7

for all [¢] € G4, [] € Gs. Therefore by Theorem A.3 we conclude that u € C*=(G).

( = ) Let us prove the result by contradiction. If Condition 1 were not satisfied, by Propo-
sition 2.2, there would be u € D'(G)\C*°(G) such that Lu = 0, contradicting the hypothesis
of global hypoellipticity of L. So, let us assume that Condition 2 is not satisfied, then for every

M € N, we choose [¢;] € G and [1y,] € G5 such that

0 < [Am(Enr) + cpe(mar)| < ((Ear) + (nar)) ™™, (2.6)

forsome 1 <m < d¢,and1 <r <d

M

Let A = {([¢;], [7j])} jen. It is easy to see that A has infinitely many elements. Define

A L, if ([¢],[n]) = ([&], [n;]) for some j € N and (2.6) is satisfied,
ulg, T] Mnps
0, otherwise.

In this way, u € D'(G)\C*(G). Let us show that Lu = f € C*(G).
If (€], [n]) & A, then | f(£,7)mn,s| = 0. Moreover, for every M € N, we have

-~
=

| £ (& man)mnre | = A (Ear) + e (man) [ @Er, a1 )iy

< ((€n) + ()™

for every element of A.

Fix N > 0. If M > N, then

| F &ty o] < ((€a1) + ()™ < ((Enr) + (ar)) ™.

For M < N we have

-~
=

- ’ FEnrsmar)mnr. | ((€ar) + (mar))Y ((Ear) + (mar)) ™Y

< Cy({&ar) + ()™

where C := max {| /j\’(fM, Nt ) mngs | ((Ear) + <7]M))N}. For Cy = max{C/, 1} we ob-

M<N

m,n,r,s

’ ?(61\/[’ MM ) s

tain
| F(E M), < Cn((E) + ()Y,
for all [¢] € é\l, n] € @, 1 <m,n <de 1 <r;s <d, Therefore f € C°(G), which

contradicts the assumption that L is globally hypoelliptic. 0
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2.2 Global solvability

In the literature there are several notions for the solvability of an operator, mainly depending
on the functional environment in which one is working and what one intends to study. So the
first step here is to define precisely what we mean by the global solvability.

Given a function (or distribution) f defined on G, assume that u € D’(G) is a solution of
Lu = f. By taking the partial Fourier coefficient with respect to x; and x, separately, and

following the same procedure of the last subsection, we obtain from (2.2) that

A(€) + et () = 0 =5 F(EM)uny, = 0.

Therefore, let us consider the following set
K :={w e D'(G): @ (& n)mn,, =0, whenever A, (€) + cpu,(n) = 0}.

If f ¢ K, then there is no u € D'(G) such that Lu = f. We call the elements of X of admissible

functions (distributions) for the solvability of L.
Definition 2.4. We say that the operator L is globally solvable if L(D'(G)) = K.

Theorem 2.5. The operator L = X1+ cXs is globally solvable if and only if there exist C';, M >

0 such that
A (&) + e (n)| = CUE) + ()™, 2.7)

forall[§] € Gy, [n] € Gay 1 <m < de, 1 <r < d, whenever A\, (€) + cur(n) # 0.
Proof. ( <= ) For each f € K define

0, if A\ (€) 4 cpn(n) = 0,

u(€ n)mn,., = i (€) + e () ?(5777)7””7‘37 otherwise.

(2.8)

Let us show that { (£, )mn,. } is the sequence of Fourier coefficient of an element u € D'(G).

Since f € D'(G), there exists N € N and C' > 0 such that

| F(E ] < CUE) + )Y,

forall [¢] € Gy, [g] € Gay, 1 <m <de, 1 <7 <d,. So

= P l©) + cttr )Y FE D)
< CUE) + ™M F (& 7|
< C((E) + ()N

| ﬁ(S? n)mn'r‘s

(2.9)
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Therefore u € D'(G) and Lu = f.
( = ) Let us proceed by contradiction by constructing an element f € K such that there
isno u € D'(G) satistying Lu = f.

If (2.7) is not satisfied, for each M € N, there exists [£5/] € G, and VRS G- such that

0 < [Am(€ar) + cpz(nar)| < ((Ear) + (maa)) ™™, (2.10)

for some 1 < m < dg,, and 1 <7 < d,,,. We can suppose that ({r) + () < (En) + (nn)
when M < N. Let A = {([¢;], [7j])} jen. Consider f € K defined by

A 1, if ([£], [n]) = ([&], [n)]) for some j € N and (2.10) is satisfied,
S Mmn,, =

0, otherwise.

Suppose that there exits u € D’(G) such that Lu = f. In this way, its Fourier coefficients

must satisfy
i (€) + et (M) TE D mnrs = (€M mnre-

So

| 8(&ar man)intns | = [N (€ar) + e (man)| 7| ?(éM,ﬂM)m?:J

> ((€a) + ()™,

where m and 7 are coefficients that satisfy (2.10). Thus

(€, man)llss > ((€ar) + (mar))™,

for all M > 0, which contradicts the fact that « € D’'(G). Therefore there does not exist
u € D'(G) such that Lu = f. O

Notice that the estimate for the global solvability in the statement of the last theorem is
exactly the same as one of the conditions to obtain global hypoellipticity announced in (2.5),

thus we have the following corollary.
Corollary 2.6. If L is globally hypoelliptic, then L is globally solvable.

A more detailed analysis of the last proof shows that it is possible to obtain a better control

on the Fourier coefficients of © when f is smooth, more precisely, we have the following result.

Proposition 2.7. If L is globally solvable and f € KK N C*(G), then there exists u € C*(G)
such that Lu = f.
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Proof. Let f € KN C*(G) and define u as in (2.8). Since L is globally solvable, it holds (2.7)
and then by (2.9)

= &) + cttr )Y FE D)
< CUE) + MM F (& M) |-

‘ ﬁ(&? n)mnrs

In view of the smoothness of f, for every N > 0 there exists C'y > 0 such that

-~
=

| F(& ) mm] < COn((E) + ()Y,

forall [¢] € é\l, n] € 6\2, 1<m<d 1<r<d, Hence

< CUE) + MM F(E M| < Cvint ((€) + ()™

| ﬁ(&’ n)mnrs

Therefore u € C*°(G) and Lu = f. O

2.3 Examples

In this section we recover some classical examples of S. Greenfield and N. Wallach (see
[26]) on the global hypoellipticity and global solvability in tori (T? and T¢) and present a class

of examples in T! x S? and in S? x S3.
Example 2.8. G = T?

Set G; = Gy = T, where T' = R/27Z. Since T! is abelian, the irreducible unitary
representations of T! are unidimensional. Moreover the dual T7 can be identified to Z. For

each k € Z, the function e, : T' — U(C) defined by
er(t) = e

is an element of T! and
T! = {ek}kez-

The Haar measure on T' is the normalized Lebesgue measure and
(k) = (ex) = V1+ K2
Let c € C and consider the operator

L=20;+co,, (t,x)e T xT.
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Notice that
oo, (ex) = ex(t)*(Oper) (t) = e " (ike'™) = ik,

that is, A\(ex) = k, for all k € Z. Thus, if Lu = f, then
Tk, 0) = i(k + cb) B(k, 0).

In this case,

N ={(k,0) € 72 k+ cl = 0}.

By Theorem 2.3, L is globally hypoelliptic if and only if N is finite and there exist C, M > 0
such that
k+cl] > C((k) + (€)™

for all (k,¢) € Z?, whenever k + al # 0. For (k, £) # (0,0), we have
[k + 1€ < (k) + () < 3([k] + 14]),
then the second condition of the Theorem 2.3 becomes
k4 ct| > C(lk| + )™ (2.11)

for all (k,¢) € Z?, whenever k + cf # 0.
Notice that A\ is an infinity set if and only if ¢ € Q. Moreover, if ¢ ¢ Q, then N' = {(0,0)}.
Suppose that I(c) # 0. If £ # 0, then

[k +at] > [S(e)lle] = [S(e) (k] + e~
If £ = 0, we have k # 0 and
|k +at| = |k > (|| + |e)~".
Take C' = max{1, |3(c)|}. Then
[k +cl] > C(k| + €))7,

for all (k,¢) € Z* {(0,0)}. Therefore, if I(c) # 0 then L is globally hypoelliptic.
Suppose now that &(c) = 0. We recall that an irrational number c is called a Liouville
number if it can be approximated by rational numbers to any order. That is, for every positive

integer N there is K > 0 and infinitely many integer pairs (k, £) so that




Constant coefficient vector fields 50

Notice that the inequality (2.11) is satisfied if and only if c is an irrational non-Liouville
number.

We conclude that L = 9, + ¢d, is globally hypoelliptic if and only if S(¢) # 0 or ¢ is an
irrational non-Liouville number.

For solvability we need to analyze the condition 2 of the Theorem 2.3 when ¢ € Q. Suppose

thatc:g,pEZanquN. We have

—_

1 1
|k + cl] = ‘k + Z—jf' = —|qk +pl| > = > =(|k| + |,
q q a g
for all (k, () € Z?, whenever gk + pl # 0.
Therefore, L = 0, + c0, is globally solvable if and only if I(c) # 0, or ¢ € Q, or ¢ is an

irrational non-Liouville number.
Example 2.9. G = T¢

From the above example we can extend the analysis for operators defined on T?. Let

d
L:Zc]@tj, CjEC

Jj=1

If Lu = f, then
d

Flhy, - kg) =i (Z cjkj> Uk, kq).

j=1

The set NV is

d
N: {k’EZd;ZCjkj:O},

j=1
and by Theorem 2.3, L is globally hypoelliptic if and only if N is finite and there exists C, M >

d —-M
>C (Z |kj\) ,
j=1

0 such that

d
E cik;
=1

d
for all k € Z% whenever Y c;k; # 0.
j=1
For instance, if some ¢; = 0, then the set A is infinity, which implies that L is not globally

hypoelliptic. It is easy to see that if all ¢; € Q, them L is globally solvable, even if some of
Cj = 0.
Ifc;=1forj=1,---,d—1and I(cq) # 0, than L is globally hypoelliptic. The same is

true if we consider c; being an irrational non-Liouville number.

Example 2.10. G = T! x §3
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Let SA3 be the unitary dual of S3, that is, SA?’ consists of equivalence classes [tg] of continuous
irreducible unitary representations ¢ : §* — CZ+Dx(24D ¢ € 1INy, of matrix-valued func-
tions satisfying t‘(zy) = t*(z)t‘(y) and t(x)* = t*(z)~* for all x,y € S®. We will use the
standard convention of enumerating the matrix elements ¢/ = of ¢* using indices m, n ranging
between —/ to ¢ with step one, i.e. we have —¢ < m,n < ¢ with { — m,¢{ — n € Ny. For

(¢ € 1N, we have
(0) = <t5> =1+l +1).
The details about the Fourier analysis on S* can be found in Chapter 11 of [35].
Let X be a smooth vector field on S? and ¢ € C. Consider the following operator defined
on T! x S3:

L:at—l—CX.

Using rotation on S3, without loss of generality, we may assume that the vector field X has the
symbol

ox(O)mn = 1Mo, L E %NO, L <mn<tl {—m,l—necN

with ¢,,,,, standing for the Kronecker’s delta (see [35], [37], and [38]). Hence, if Lu = f, then
F(k, O = ik + em) Bk, O,
where k € Z, 1 € %No, — <m,n</fand /¢ —m,{ —n € Ny. In this case,
N ={(k,0) € Z x 3Ng; k+cm =0, forsome — ¢ <m < {,{ —m € No}.

By Theorem 2.3, L is globally hypoelliptic if and only if N\ is finite and there exist C;, M > 0
such that
|k 4+ cm| > C((k) + (€)™ (2.12)

for all (k,¢) € Z x %NO, — <m </, { —m € Nywhenever k +cm # 0. For { € %NO, we
have

Lavo<uy<ite

V2

and we can write (2.12) as

k+cem|>C(lk| +1+0)M

for all (k, () € Z x tNo, =0 < m < {, { —m € Ny whenever k + cm # 0.
Notice that (0,¢) € N, for all ¢ € Ny, so A has infinitely many elements and then L is not

globally hypoelliptic for any ¢ € C.
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The analysis of the global solvability of L is similar to the T? case and we have L globally
solvable if and only if S(c¢) # 0, or ¢ € Q, or ¢ is an irrational non-Liouville number. For

instance, the operator

L:at+aX,

where o is the continued fraction v = [10",10%,10%, .. ], is not globally solvable because o

is an irrational Liouville number (see page 162 of [29]).
Example 2.11. G =S x S3

Consider the operator

L :Xl —|—CX2,

where X, X, € s% and ¢ € C. Here, we assume that the vector field X acts only in the first
variable, while X5 acts only in the second variable. Following the ideas of Example 2.10, we

may assume that
0x,(Omn = 1M, L E %NO, —<m,n </t {—m,{—n € Ny,
and
0x,(K)rs = ir0ps, K E %NO, —k<r,s<k, k—rk—s€Nj.

Hence, if Lu = f, we have
L/f\("fa g)mnrs = i(T + Cm) ﬁ(/{, @mnmv

where k., { € %NO, —k<r,s<k,—{<mmn</land,k—r,k—s,{—m,{—n € Ny. Itis easy
to see that if (k,¢) € N x N, then (x,¢) € N. So the operator L is not globally hypoelliptic.
As in Example 2.10, we conclude that L is globally solvable if and only if I(c) # 0, or ¢ € Q,
or c¢ is an irrational non-Liouville number. For instance, similarly to the previous example, we
notice that the operator

L:Xl—i—OéXQ

is not globally solvable, because o = [10",10%,10%, .. ] is an irrational Liouville number.

2.4 Weaker notions of hypoellipticity

All the known examples of globally hypoelliptic vector fields are set on tori. Actually, in

1973, S. Greenfield and N. Wallach proposed the following conjecture.
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Conjecture 2.12 (Greenfield-Wallach). If a closed, connected, orientable manifold M admits
a globally hypoelliptic vector field X, then M is diffeomorphic to a torus and X is smoothly

conjugate to a constant Diophantine vector field.

In [22], G. Forni showed the equivalence between this conjecture and Katok’s conjecture,
about the existence of C"*°~cohomology free smooth vector fields on closed, connected, ori-
entable smooth manifolds. From this equivalence we will show that on compact connected Lie
groups the set A/ defined in (2.4) contains only the trivial representation. First, let us define

what is a C"*°~cohomology free vector field.

Definition 2.13. Let M be a closed, connected, orientable smooth manifold. A smooth vector
field X on M is C*°~cohomology free if for all f € C(M) there exists a constant ¢(f) € C
and v € C*°(M) such that

Xu=f - elf).

Theorem 2.14. [G. Forni [22]] Let X be a smooth vector field on a closed connected manifold

M. Then X is C*°—cohomology free if and only if X is globally hypoelliptic.

Proposition 2.15. If G is a compact connected Lie group and L is globally hypoelliptic, then

N has only one element.

Proof. Notice that for the trivial representations 1, and 1, we have A\;(1g,) = 1 (1g,) =0,

so N # @. Suppose that there exists a non-trivial representation such that

Am (&) + cpr(n) = 0.

forsome 1 <m <dg, 1 <r <d,. Let f =&, X m, € C°(G), so

ﬂ@%m:L [ f(or o) Wz drade,

=/ E(@1)1mn(22)1:E(21)1m N(22)1rdToday
G1 JGo

= ‘f($1)1m|2d931 |77($2)1r’2 dxy
G1 G2

= (dﬁdn)il

Since L is globally hypoelliptic, by Theorem 2.14 L is C"*°~cohomology free, then there exists
u € C*°(G) such that

Lu= f— fo,
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where fo = [, f dpic. We have

L&, Mt = i (€)) + e (1)) B )ty = 0,

which implies that

o —
P——

f - fO(Sa n)mlﬂ =0.

Since £ ® 7 is not the trivial representation, by (1.1) we have ]?0(5, M)m1,, = 0, so

?(57 n)mlrl = Oa

what is a contradiction because /f(f . Mmi,s = (ded,)~!. Therefore A contains only the trivial

representation. O
In view of Example 2.10 and Proposition 2.15, the following question naturally arises:

Question 2.1. Does there exist a compact Lie group G # T¢ such that there exists X € g

satisfying o x (¢) singular for only finitely many [¢] € G. that is, the set
Z={[¢] € é; Am(¢) =0, for some 1 < m < d,}

is finite, where o x () mn = iAm(0)0mn?

S. Greenfield and N. Wallach have proved this conjecture for compact Lie groups in [27].
The conjecture it was also proved for compact manifolds of dimensions 2 and 3, and in some
very particular cases, which are described by G. Forni in [22] and by L. Flaminio, G. Forni, and
F. Rodriguez Hertz in [21]. The answer to the above question is a way to obtain an alternative
proof for the Greenfield-Wallach conjecture on compact Lie groups.

In view of the validity of the Greenfield-Wallach conjecture on compact Lie groups, the
study of the global hypoellipticity of vector fields defined on closed manifolds is restricted to
tori. However, the study of the regularity of solutions of such vector fields is yet an interesting
subject. For this reason, in this section we will make some considerations looking to weaken the
usual concept of the global hypoellipticity and introduce what we will call global hypoellipticity

modulo kernel and global W-hypoellipticity.

2.4.1 Global hypoellipticity modulo kernel

First, assuming that the set A has infinitely many elements, we will show that to reduce the

range of the operator does not help us to obtain a weaker version of global hypoellipticity.
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Proposition 2.16. Suppose that N has infinitely many elements. Then there is no subset A C
C*°(Q) that satisfies the condition: u € D'(G) and Lu € A imply that u € C*(G).

Proof. Assume that there exists a subset A C C'*°((G) that satisfies the property above. Let
u € D'(G) such that Lu € A, then u € C*(G). By Proposition 2.2 there exists an element
v € ker L such that v € D'(G)\C*(G). Since v € ker L, we have L(u + v) = Lu € A, which

implies that u + v € C*°(G). Therefore v = (u + v) — u € C*(G), a contradiction. O
In view of Proposition 2.16 we give the following definition:

Definition 2.17. We say that an operator P : D'(G) — D'(QG) is globally hypoelliptic modulo
ker P if the conditions u € D'(G) and Pu € C*(G) imply that there exists v € C°(Q) such
that v — v € ker P.

Clearly, global hypoellipticity implies global hypoellipticity modulo kernel. Our main re-
sult here is the equivalence of the concepts of global hypoellipticity modulo kernel and global

solvability for constant coefficient vector fields.

Proposition 2.18. The operator L = X, + cXs is globally hypoelliptic modulo ker L if and
only if L is globally solvable.

Proof. ( = ) Suppose that L is not globally solvable. Then by Theorem 2.5, for every M € N,

choose [£y/] € G, and (] € G- such that

0 < [Aa(€nr) + cpee(man)] < (Ear) + (nar)) ™,

forsome 1 < m < dg,, and 1 < r < d,,, . Using the same construction of the proof of Theorem

M
2.3, wefindau € D'(G) \ C*(G) such that Lu = f € C*°(G). Notice that if u — v € ker L,
for some v € C*°(G), then

=

i(Am(§) + cpr(n))u —v(&, M) mn,.. =0,

for all [¢] € é\l, [n] € é\g, 1 <m,n <d 1<r,s<d,, which implies that

Am(€) + () # 0 = G(& N)mne = 0(E, M) mny-

Since U(€ar, Nas)mn,, = 1, we conclude that v ¢ C(Q), so L is not globally hypoelliptic
modulo ker L.

(<= ) Letu € D'(G) such that Lu = f € C*(G). Notice that f € K N C*°(G) and by
Proposition 2.7 there exists v € C*°(G) such that Lv = f. Therefore u — v € ker L and then L

is globally hypoelliptic modulo ker L. 0
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Example 2.19. Let G = T' x S3. In Example 2.10 we saw that the operator L = 0, + X is not
globally hypoelliptic but it is globally solvable. By Proposition 2.18, we conclude that even not
being globally hypoelliptic, the operator L is globally hypoelliptic modulo kernel.

2.4.2 )YV-global hypoellipticity

In the light of Proposition 2.16, our next notion of hypoellipticity is based on the reduction

of the domain of the operator.

Definition 2.20. Let W be a subset of D'(G). We say that an operator P : D'(G) — D'(G) is
W-globally hypoelliptic if the conditions v € W and Pu € C*(G) imply that u € C*(G).

Observe that an operator P is always C°°((G)—globally hypoelliptic, and to say that P is
D'(G)-globally hypoelliptic means that P is globally hypoelliptic.

Example 2.21. Let L = X, + c X, and set
K :={ue D (G) ﬁ(f,n)mm,s = 0, whenever A\, (&) + cu,.(n) = 0}.

If L is globally solvable, then L is KC-globally hypoelliptic.
Indeed, by the characterization of the global solvability (Theorem 2.5), there exist C;, M > 0

such that
A (€) + cpr(n)| = C((E) + ()Y,

forall [¢] € G, n] € Gay 1<m < de, 1 <r <d,, whenever \,,(§) + cp.(n) # 0.
Let u € K such that Lu = f € C*(G). We know that

FE D) mns = {Om(€) + €1 (1) BE M

If A (&) + cpir(n) = 0 then T(E, 1), = 0.
If A (&) + cur(n) # 0, we have

1
[Am (&) + cpn(n)]

B D) | = | F (&M < CUE) + )™ F(E D)

Therefore u € C*(G).

Proposition 2.22. If W, C W, and L is Wa—globally hypoelliptic, then L is YW,—globally
hypoelliptic.
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Proof. Let u € W, such that Lu € C*(G). As W, C W, we have u € W, and since L is
W,—globally hypoelliptic, u € C*°(G). Therefore L is W;—globally hypoelliptic. O

Since we always have K C L(D'(G)), where L(D'(G)) denotes the image of L, we obtain

the following corollary.
Corollary 2.23. If L is K—globally hypoelliptic, then L is L(D'(G))-globally hypoelliptic.

Corollary 2.24. Suppose that L is globally solvable. If there exists k € N such that L*u €
C>®(Q), then Lu € C*(G).

Proof. Suppose that there exists k& € N such that L*u € C*°(G). Since v = LF"1u € L(D'(G))
and Lv € C*(G), we have, by the L(D’'(G))-global hypoellipticity of L, that v € LF~lu €

C*°(@G). We can continue this process to conclude that Lu € C*°(G). N

If L is globally solvable, the previous corollary says that if Lu ¢ C*(G), then L*Fu ¢
C>(G) forall k € N.
Let

M = {u € D'(G);¥N €N, 3Cx > 0; [|u(&, n)llus < Cn((€) + (m) ™", V([€], ) €N}
Notice that C*°(G) C M.
Theorem 2.25. If L is globally solvable, then L is M~-globally hypoelliptic.

Proof. Let u € M such that Lu € C*°(G). We know that

Lu(€, )y, = i () + 1t (1)) BE D)

forall [¢] € Gy, [n] € Ga, 1 <m < de,1 <1 < d,. If (€], [n]) & N, then A (€) + cpun(n) # 0

and
1
(f»n)mnrs = Z()\m(f) + cm(ﬁ))

Proceeding similarly as in the proof of Theorem 2.3, it can be proved that for every N € N,

LU/(S’ n)mnrs

£)

there exists C, > 0 such that

1€ m)llks < O ((E) + ()™,

for all ([¢],[n]) ¢ N. Since u € M, we can conclude that for every N € N, there exists

K > 0 such that
1a(&,n)|las < Kn((€) + ()™,

for all ([¢], [7]) € G1 x Gs. Therefore u € C®(G). O
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2.5 Low order perturbations
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In view of the Greenfield-Wallach conjecture, a way to obtain example of globally hypoel-

liptic first order differential operators defined on compact Lie groups other than the torus is to

consider perturbations of vector fields by low order terms.

We start by considering the case where the perturbation is given by a constant. In the next

chapter we will deal with perturbations by smooth functions. This approach was inspired by the

reference [5] of A. Bergamasco. In both situations, perturbations by constant and functions, we

characterize the global hypoellipticity and the global solvability.
Let G be a compact Lie group, X € g and ¢ € C. Define the operator
L,: C®(G) — C=(G) as:

Lyu = Xu+qu, ueC®G)

We can extend L, to D'(G) as:

(Lgu, ) := —(u, Xop) +(u,qp) = —(u, L_op), u € D'(G), p € C(G).

If Lyu = f € C*(G), the Fourier coefficient of f can be obtained as

—

F(6) = Lyu(€) = Xu(€) + qu(€) = ox(£)a(€) + qu(€),

for all [¢] € G. So

forall [¢] € @, 1 <m,n <dg.

From this we conclude that
f(f)mn = 0, whenever \,,(§) —ig = 0.

In addition, if A,,(£§) — iq # 0, then

1

i) i)

a(g)mn =

(2.13)

Thus, we obtain the following characterization for the global hypoellipticity and solvability

of L, which is similar to the vector fields case and so its proof will be omitted.

Theorem 2.26. The operator L, = X + q is globally hypoelliptic if and only if the following

conditions are satisfied:



Constant coefficient vector fields 59

1. The set

-~

N ={[§] € G; \u(€E) — ig = 0 for some 1 < m < d¢}
is finite.

2. 4C, M > 0 such that
A (&) —ig] > C(&)™Y, (2.14)

forall[() € G, 1<m< d¢ whenever \,,,(§) + iq # 0.
Let IC; := {w € D'(G); W(&)mn = 0, Whenever \,,,(§) —iq = 0}.
Definition 2.27. We say that L, is globally solvable if L,(D'(G)) = K,.

Theorem 2.28. The operator L, = X + q is globally solvable if and only if the condition (2.14)
is satisfied, that is, 3C, M > 0 such that

Am(€) =gl > C(€)™Y,
forall[€) € G, 1<m < d¢ whenever \,,(€) +iq # 0.
Corollary 2.29. If L, is globally hypoelliptic, then L, is globally solvable.

Recall the definition of global hypoellipticity modulo kernel given in Section 2.4. The proof

of the next result is similar to Proposition 2.18 and its proof will be omitted.

Proposition 2.30. The operator L, is globally hypoelliptic modulo ker L, if and only if L, is
globally solvable.

Example 2.31. G =T! x §3

In Example 2.10 we concluded that the operator L = 9, 4+ v/2.X is not globally hypoelliptic,
but it is globally solvable, since v/2 is an irrational non-Liouville number. Consider now the

operator

L=0+V2X +i}.
In this case we have
N = {(k,é) €7 x %No;k—kﬁm—l—%:O, for some —Egmgf}:g.

Notice that

1
— 2

‘k—l—\@m—ké =

(2k+ 1)+ 2\/§m‘ .
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In view of 21/2 be an irrational non-Liouville number, by Theorem 2.26 we conclude that
L is a globally hypoelliptic operator, which implies that L is also a globally solvable operator

(Corollary 2.29). Notice that for the operator
L=0,+V2X +1,

the set N remains having infinitely many elements. Therefore L is not globally hypoelliptic.
However, we have that L is globally solvable because \/2 is an irrational non-Liouville number
and so satisfies (2.14).

We also obtained in Example 2.10 that the operator . = 0, + aX is neither globally hy-

poelliptic nor globally solvable, where a = [10",10%,10%, ...]. Consider the perturbation
L=0;+aX +1ia.
We have that
N ={(k,0) € Zx iNp;k + am+ a =0, for some — ¢ <m < (}

has infinitely many elements because (0,¢) € N, for every { € N. So L is not globally

hypoelliptic. Moreover, we have
|k +am +a| = |k +a(m+1)|.

Since « is an irrational Liouville number, we conclude by Theorem 2.28 that L is not globally
solvable. Hence, the perturbed operator continues not being neither global hypoelliptic nor

globally solvable. With the same argument, we can also conclude that the operator
L=0+aX + z%

is neither globally hypoelliptic nor globally solvable.

Example 2.32. G = S3 x §3

Similarly to the T! x S? case, we will analyze now what happens to perturbations of the

operators that we have studied in Example 2.11. Notice that the operator
L=X+ V2X 2
is globally solvable but it is not globally hypoelliptic. Consider the perturbed operator

Li = X1+ V2X, +id.
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Differently to the previous example, this operator remains not being globally hypoelliptic be-
cause for k € $Ny \ Ny and ¢ € Ny, we have (,¢) € N. Notice that L, continues being
globally solvable.

Consider now the operator

L2 :X1+\/§X2+%Z

For this operator we have N’ = & and it satisfies the conditions of Theorem 2.26 because V2is

an irrational non-Liouville number. Therefore L, is globally hypoelliptic.
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Chapter 3

Variable coefficient vector fields - Real case

3.1 A class of vector fields with variable coefficients

Let G'; and G5 compact Lie groups, and set G = (G X G5. In this section we will characterize

the global hypoellipticity and the global solvability for operators in the form
Lag = X1+ a(21) Xy + q(71, 12),

where X € g1, Xs € g2, a € C(G1) is a real-valued function, and ¢ € C*°(QG). First, let us

consider the case where g = 0.

3.1.1 Normal form

Let
La = X1 + a(:cl)Xg,

where X; € g1, Xy € go and a € C((G) is a real-valued function. If L,u = f € C*(G),

taking the partial Fourier coefficients with respect to the second variable, we obtain

—_ ~

Lau(xlan)rs = Xqu(z1,m)rs + iUT(n)a(xl)a(xl7n)rs = f($1777>rsa

for all [n] € Gi,1<rs< d,,. The idea now is to find ¢( - ,7),s # 0 such that

U(Zlfl, 77>rs = 90(:1317 n)rsa(xla n)rs

satisfies

~

Xyv(x1,m)ps + ipr(n)aov(xy, n)rs = (@1, N)rs f(T1,0)rs == g(x1, )1,
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for all [n] € @1, 1 <r,s <d,, for some qy € R. So

~

(@, n)rs f (1, 0)rs = X1 (@(@1, 0)rsti(@1, )rs) + tpr (M aop(@1, n)rsti(@1, 1)y
= X1 (@1, m)rs) (21, )rs + @(21, )rs(XaT(21,7)rs)
+ i () aop (w1, 1)rsti(21,7)rs
= Xi(p(z1,n)rs)ulz1,m)rs — ipr(n)(alz1) — ao)o(T1, M)rst(T1,1)rs
+ (@1, 0)ps (XaU(21,0)rs) + ipr(n)alzr) @21, 1)rs)
= X1(p(@1, 0)rs) T (@1, Mrs + Q@1 M f (1,7
—ipr(n)(a(z1) — ao)p(w1, n)rsti(z1,1)rs

Thus, if u(x1,n),s # 0, we have

Xip(x1,m)rs = ipr(n)(a(zy) — ag)o(z1,1)rs (3.1)

Suppose that there exists A € C*°(G) such that
XlA(xl) = a(xl) — aop. (32)
We can assume that A is a real-valued smooth function. So

0= XlA(Il) d.I‘l = / (CL([El) — (lo) dlL’l
G1 Gl

Therefore ag = / a(x1) dry and the equation (3.1) becomes
G1

Xi(w1,n)rs = i (0) (X1 A) (1) (21, 1) (3.3)

and by Lemma 3.15, the function
90($1, n)rs = 6iur(77)A(331)

is a solution of (3.3).

Define the operator ¥, as

dy

U u(xy, zo) Z dy Z et (MA(z1) u(x1,n)rs Nsr(T2)- (3.4)

meGa =
Remark 3.1. When G, is the one-dimensional torus, the operator X, = 0, is globally solvable
and a—agy belongs to the set of admissible functions, therefore the assumption over the existence
of such function A satisfying (3.2) is verified, for any a € C*°(G1). However, for other compact
Lie groups, including higher-dimensional torus and the sphere S?, it is not difficult to construct

examples of a function a for which there is no A satisfying (3.2).



Variable coeftficient vector fields - Real case 64

The next lemma is a technical result necessary to show that the operator W, is well-defined.

Lemma 3.2. Let G be a compact group, f € C*(G), and z € Cwith |z| > 1. Let {Y1,--- , Yy}

a basis for g. For all 3 € N4, there exists Cg > 0 such that
‘aﬁed(r)’ < Cg\z“me%(zﬂz)). (3.5)

Proof. Let us proceed by induction on ||

For | 3] = 0, we have
08T @)] = [¢+/@)] = ReFE),

Suppose now that (3.5) holds for every v € N& with |y| < k and let 3 € N& with || = k+1.
We can write 5 = v + ¢;, forsome j = 1,--- ,d and |y| = k. So
09| = 7Y = |07 (=Y () )
<ol Yo 1Y ()]0 e )

YA+ =y

O NBLRCIO)
0

Remark 3.3. We have a similar result for the case where |z| < 1. In this case, the power of |z|

on the estimate (3.5) is equal to 1 for every B € Ny, i.e., for all B € N¢ there exists C such that
190Pex/@)| < C’5|z|eRe(zf($)), Vr e G.
Proposition 3.4. The operator ¥, defined in (3.4) is an automorphism of C*°(G) and of D'(G).

Proof. First of all, notice that W_, is the inverse of V,, therefore we only need to prove that
Vo (C(G)) = C*(G) and ¥, (D(G)) = D'(G).

Let 8 € Ngand u € C*°(G). We will show that U,u € C'*°(G). Notice that \I/la\u(xl, N)rs =
et Ma@)T (2 n), and . (n)A(z1) € R, for all [n] € é\z, 1 <r <d,and z; € G. Using

(3.5) we obtain
07T gu(wy, n)a| = [0° (" DA 2y ), )|

Z aﬂ’eiur(n)A(wl)ﬁﬁua(l'l, 7])7“5

B+B"=p
< Z ‘5B’eiu7-(n)A(m) ’aﬁ”a(%’n)rs
Bi+5"=8

< Y Colm)? oM @),
BI+8"=p
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Since u € C*°(G) and |1, (n)| < (n), it is easy to see that given N > 0, there exists Cjsy such

that
|8B\I/ja\u(xl, 77)7“8| S CBN<77>_N'
Therefore W,u € C*°(G). The distribution case is analogous. O

Proposition 3.5. Let a € C>(G1), ag = [, a(v1)dw1, and consider the operator L,, =

X + apXy. Assume that there exists A € C*°(G1) such that X1 A = a — ag. Then we have
LyyoV,=V,0L,
in both C*=(G) and in D'(G), where Y, is given in (3.4).

Proof. Let us show that for any u € C*°(G) we have

o — o —

Lao(\pau) (3717 n)rs = \Ija(Lau) (xla 77)7”57

forall z; € Gy, ] € Ga, 1 < 7,5 < d,.
Indeed,

— e —

Lag (W) (w1, 1)re = X Wqui(1, 1)rs + a0 XpWati(w1, 1)y

= Xy Wau(1,n)rs + it () aoWau(w1, 1),

= X, (M MA@y n)ys) + g () age™ DA Uz, ),

_ (Xlei“r(”)“l(“))ﬂ(xl, Nrs + ewr(n)A(wl)(Xla(xh M)rs)
+ wr(n)aoeiur(n)z“(wl)@(m, ) rs

= ipr () (az1) = ag)e™ AT (g ) + MDA (X (a1, 1),)
+ i,u,,(n)aoeim(")A(“)ﬂ(m, 0)rs

_ ei#r(n)A(Il)(Xla(x17 N)rs + iper(n)a(z1)u(z1,m)rs)

= AT (21, 1) s

—

= \Ija(Lau) ($1> 77)7‘8

The same is true when u € D'(G). O

3.1.2 Global properties

Recall that the operator L, is globally solvable if L,,(D'(G)) = K,,, where

Ko := {w € D'(G); An(€) + aopr(n) = 0, whenever @ (€, 7). = 0}.
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We will say that L, is globally solvable if L,(D'(G)) = J,, where
Jo={veD(G);V_,ve Ky}

Proposition 3.6. The operator L, is globally hypoelliptic (resp. globally hypoelliptic modulo
ker L,) if and only if L,, is globally hypoelliptic (resp. globally hypoelliptic modulo ker L,,).
Similarly, the operator L, is globally solvable if and only if L, is globally solvable.

Proposition 3.7. Assume that there exists A € C(G) such that X1A = a — ag, where ay =

Jo a(z) dz. Then
1. L, is globally hypoelliptic if and only if L, is globally hypoelliptic;

2. L, is globally hypoelliptic modulo ker L, if and only if L,, is globally hypoelliptic modulo
ker L

q07

3. L, is globally solvable if and only if L, is globally solvable.

Proof. 1. Suppose that L, is globally hypoelliptic. If L, ,u = f € C*(G) for some v € D'(G),
then¥_,L,u=V_,f € C®(G). Since V_,0 Ly, = L,0¥_,, we have L,(V_,u) € C®°(Q)
and by global hypoellipticity of L, we have V_,u € C°°(G), which implies that u € C*(G)
and then L, is globally hypoelliptic.

Assume now that L, is globally hypoelliptic. If L,u = f € C*°(G) for some u € D'(G),
we can write L,(V_,V,u) = f € C>(G). By the fact that L, o ¥_, = V_, o L,, we obtain
U_ Lo (Vou) = f, thatis, Ly, (V,u) = U, f € C®(G). By global hypoellipticity of L,, we
have that ¥,u € C*°(G) and then u € C°(G).

2. Suppose that L, is globally hypoelliptic modulo ker L,. If L,,u = f € C*®(G) for
some u € D'(G), then V_,L,u = V_,f € C*°(G). Since V_, 0 L,, = L, o ¥_,, we have
L,(V_,u) =V_,f € C®(G). By assumption, L, is globally hypoelliptic modulo ker L,, so

there exists v € C*° such that V_,u — v € ker L,, i.e.,
L,V _,(u—Y,w)=Lo(¥_,u—v)=0.

Hence, L,,(u — V,v) = 0. Since V,v € C*°(G) and u — ¥,v € ker L,,, we conclude that L,
is globally hypoelliptic modulo ker L,,. The other implication is analogous so it is omitted.

3. Assume that L, is globally solvable and let f € K,,. Let us show that there exists
u € D'(G) such that L,,u = f. We can write f = ¥V, V_,f, soV_,f € J,. Since L, is
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globally solvable, there exists v € D'(G) such that L,v = V_, f. we can write v = V_, Vv
and then L,(V_,V,v) = U_,f. By Proposition 3.16, we have

Vo LagVov = La(V_oV,0) = V_,f,

thatis, L,,V,v = f.

Suppose now that L, is globally solvable and let f € 7,. By the definition of 7,, we have
U, f € K,, and by the global solvability of L,,, there exists u € D'(G) such that L,,u = ¥, f,
thatis, V_,L,,u = f. By Proposition 3.16, we get L,V _,u = f. ]

Hence, the operator L, inherits the following properties from the operator L, that we have

proved in Chapter 2.
Corollary 3.8. If L, is globally hypoelliptic, then L, is globally solvable.

Proof. Suppose that L, is globally hypoelliptic. By Proposition 3.7 the operator L,, is globally
hypoelliptic, so by Corollary 2.6, L,, is globally solvable. Finally, by Proposition 3.7, we
conclude that L, is globally solvable. [

Corollary 3.9. The operator L, is globally hypoelliptic modulo ker L, if and only if L, is
globally solvable.

Example 3.10. G = T?

For instance, for a(t) = sin(t) 4+ /2, we have ag = v/2 and A(t) = —cos(t). Take G, = T".

We know by Example 2.8 that the operator
Loy = 0, + V20,
is globally hypoelliptic, because v/2 is an irrational non-Liouville number. Hence,
Lo = 0, + (sin(t) + v2)0,
is globally hypoelliptic and then globally solvable.

Example 3.11. G = T! x S3

Take now G5 = S3. By Example 2.10, we know that

Loy = 0 +V2X
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is not globally hypoelliptic but it is globally solvable. Therefore
L, = 8, + (sin(t) — vV2)X

is not globally hypoelliptic and it is globally solvable.

Example 3.12. G = S3 x S3

We can identify S* with SU(2) and the Euler’s angle parametrization of SU(2) is given by

z(¢,0,¢) =

cos ( ) elet¥)/2 jgin (
9 € SU(2), (3.6)
2

9
2
7 8in (g) e~ Ho=¥)/2 ¢og (

where 0 < ¢ < 21,0 < 0§ < 7w and —27 < ¥ < 27 (see Chapter 11 of [35]). The trace

function on SU(2) in Euler’s angles (see (3.6)) is given by

tr(z(,0,v)) = 2cos (£) cos (#) :

Consider the operator

L= X1 + a(xl)Xg,

where X acts in the first variable, X, acts in the second variable and a : S* — R is expressed

in Euler’s angles by
a(z1(¢1,01,¢1)) = — cos (%) sin (£52) + V2 (3.7)
The operator X in Euler’s angles is the operator d,, and then we have
Xyte(zy) = a(zy) — V2.

By Proposition 3.7, we conclude that L is not globally hypoelliptic but it is globally solvable,
because the operator Ly = X; 4+ v/2.X, has this properties (see Example 2.32).

Remark 3.13. We had supposed that given a function a € C*(Gy) there exists a function
A € C*(Gy) and ag € R such that X1 A = a — aqg, that is, X; is C*°—cohomology free on G,
(see Definition 2.13).

Conjecture 3.14 (Katok). If a closed, connected, orientable manifold M admits a C*°—coho-
mology free vector field X, then M is diffeomorphic to a torus and X is smoothly conjugate to

a Diophantine vector field.
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In [22], G. Forni has proved that the Katok’s conjecture is equivalent to the Greenfield’s
and Wallach’s conjecture, mentioned in the previous chapter (see Conjecture 2.12). In view of
the proof of this conjecture in dimensions 2 and 3, and its validity in compact Lie groups, it is
necessary to add in the hypothesis the existence of such A satisfying X1 A = a — ag. Otherwise,

the above results would be valid only for the case where G is a torus.

3.2 Perturbations of vector fields by functions

In this section we are concerned with the operator L, := X + ¢, with ¢ € C*°(G). The idea
is to establish a connection between the global hypoellipticity and the global solvability of L,
and L,, = X + qo, where q is the average of ¢ in G.

In [5], Bergamasco proved that the operator
Lq:at+aax+qv

where a € R is an irrational non-Liouville number and ¢ € C°°(T?), is globally hypoelliptic
if and only if it is the operator Ly, = 0; + a0, + qo, Where gy = [, q(t, ) dzdt. The key
to make this connection is the fact that L, o e™? = ¢ % o L, where Q € C™°(T?) satisfies
(Op + ad,)Q = q — qo- The existence of such () is guaranteed by the global hypoellipticity of
the operator 0; + a0,.

For the study of the operator L, = X + ¢, with ¢ € C*°(G), we can not assume the global
hypoellipticity of X in view of the Greenfield-Wallach’s conjecture. Hence, we will assume as

hypothesis that there exists ) € C*°(G)(G) such that
XQ =9 qo,
where gy = [, ¢(z) dx.
Lemma 3.15. For any ¢ € C*(G) we have
Xe? = (Xp)e®.

Proof. Let x € GG, then
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Let L, : C*(G) — C*°(G) defined by
Lyou= Xu(xz)+qu, ueC™qG).
We can extend L, to D'(G) as in (2.13).

Proposition 3.16. Assume that there exists ) € C*(G) such that XQ = q — qo, where qy =
Jo a(x) dz. Then

l. Lyoe @ =e%oL,,inboth C®(G) and in D'(G);
2. L, is globally hypoelliptic if and only if L, is globally hypoelliptic;

3. Lg is globally hypoelliptic modulo ker L, if and only if L, is globally hypoelliptic modulo
ker Ly,.

Proof. 1. Letu € C*°(G). Then
(Lyoe ™ u = Ly(e “u)
= X (e %u) +qge % = (Xe Du+ e Xu+ qge %
= (-XQ)e u+ e ®Xu+ geu
=—(¢—q)e “u+e ?Xu+ qe u
= e 9(Xu + qou)

- (e_Q © LQO)U

The same is true when we have u € D'(G).

The proof of 2. and 3. is similar to what was done in Proposition 3.7. U

Now assume that L,u = f € D'(G) for some u € D'(G). We may write u = e~?(e%u), so
L,(e=?(e“u)) = f. By Proposition 3.16, we have e~ “ L, e%u = f, that is,

Lg,e%u = e“f.
This implies that e f € K.
Definition 3.17. We say that the operator L is globally solvable if:
1. there is Q) such that X(Q = q — qo, where qy = fG q(z) dx; and

2. L,(D'(GQ)) = J,, where
T, ={v e D(G); Qv e Kyl
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Proposition 3.18. L, is globally solvable if and only if L, is globally solvable.
The proof is omitted because it is analogous to the proof of Proposition 3.7.
Corollary 3.19. If L, is globally hypoelliptic then L, is globally solvable.
Corollary 3.20. L, is globally hypoelliptic modulo ker L, if and only if L, is globally solvable.
Example 3.21. G = T?

Consider the operator

Lq = 6t + ax + (](t,l’),

where ¢(t, z) = sin(t+z). For Q(t, z) = —3 cos(t+x) we have (8, +09,)Q(t, z) = q(t,z) — qo,
where ¢y = 0. Since L,, = 0,+ 0, is not globally hypoelliptic, we conclude by Proposition 3.16
that L, is not globally hypoelliptic. On the other hand, the operator L, is globally solvable,
then L, is globally solvable.

For ¢(t,x) = sin(t + x) + 1, we have ¢y = 1 and by Theorem 2.26 we have that L, is
globally hypoelliptic and then L, is globally hypoelliptic, which implies that L, is also globally

solvable.
Example 3.22. G =T! x §3

Recall from Example 3.12 that the trace function on SU(2) in Euler’s angles (see (3.6)) is
given by
tr(z(¢, 0, 1)) = 2cos (%) cos (#) :
Consider the operator

Lq - at + \/§X + Q<t7x)7

where X is the same vector field from Example 2.10 and
q(t, v) = —sin(t)tr(z) + V2 cos(t)h(x) + il,
where  : S* — C is expressed in Euler’s angles by
h(z(¢,0,1)) = — cos (g) sin (@) ) (3.8)
We have that X in Euler’s angles is the operator 0y, so

Xtr(z) = h(x).
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Let Q(t,z) = cos(t)tr(x). Notice that
(at + \/§X)Q(t7 x) = Q<t7 IL’) - Z%

By Example 2.31, the operator L,, = 0;+ V2X —i—% is not globally hypoelliptic but it is globally

solvable. By Proposition 3.16 we conclude that

L, = 0, + V2X — sin(t)tr(z) + V2 cos(t)h(z) + it
is not globally hypoelliptic, but it is globally solvable.
Example 3.23. G = S? x S3

Consider

L=X+ \/§X2 + Q(Jfl,x2)7

where X acts in the first variable, X, acts in the second variable, and ¢ : S* — C is expressed

in Euler’s angles by

q(x1,22) = pr(a1) + V2pa(an) + 3,

where p; and p, are the projections of SU(2) ~ S given in Euler’s angle by

pr(w(9,0,0)) = cos (§) 2 and  pa(x(9,0,1)) = isin (§) 07,
with 0 < ¢ < 27,0 < 0 < 7, =27 < ¢ < 2m. Notice that the function Q(x1,z5) =
2i(pa(x2) — p1(21)) satisfies

(Xl + \/§X2>Q<I1, SCQ) = Q(Il, 1’2) — %’l

By Proposition 3.16 and 3.18, we conclude that L is not globally hypoelliptic but it is glob-
ally solvable, because Ly = X; +v/2X, + %z has this properties (see Example 2.32). Similarly,
we conclude that

L= X1 +vV2Xs + pi(21) + V2 pa(22) + il

is globally hypoelliptic because Ly = X + v/2X, + }l@' is globally hypoelliptic (see Example
2.32).
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3.3 The general case
We can now combine what was made in Sections 3.1 and 3.2 to study the operator
Laq = Xl + (Z(.Tl)XQ + (](.fl?l, .TQ),

where X; € g1, X5 € g2, a € C*°((G,) is areal-valued function, and ¢ € C*°(G). Furthermore,

we will assume that there exists ) € C*(G) satisfying

L,Q = (X1 +a(z1)X2)Q = ¢ — qo-
By Proposition 3.16 we have

Log o e @=eCoL

aqo»

where L,q, = X1 + a(z1) X2 + qo.

It follows from Proposition 3.5 that

L oV,=V,0L

aoqo aqo»

where Lgyq, = X1 + apX2 + qo. Thus,
Logoe @oW, = 9oL oV, =e 9oV, 0 Ly
We say that L, is globally solvable if L,,(D’'(G)) = Juq. Where
Jaq = {v €D'(G); V_4e% € Kupg}
and
Kaggo = {w € D'(G); ﬁ(f,n)mms = 0 whenever \,,(£) + aop-(n) — igo = 0}.
The next results are consequences of what was done previously.

Proposition 3.24. The operator L, is globally hypoelliptic (resp. globally hypoelliptic mod-
ulo ker Log) if and only if Ly, is globally hypoelliptic (resp. globally hypoelliptic modulo
ker Lgyq,). Similarly, the operator L, is globally solvable if and only if Le,, is globally solv-
able.

Corollary 3.25. If L,, is globally hypoelliptic, then L, is globally solvable.
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Corollary 3.26. The operator L, is hypoelliptic modulo ker L, if and only if L, is globally

solvable.
Example 3.27. G =T! x §3

Let G = T' x S? and X € s° as in the Example 2.10. Let a(t) = sin(¢) + v/2 and
q(t, ) = cos(t) + (sin(t) ++/2)h(x) + 1, with h as in Example 3.2. Here, ap = v/2 and ¢y = 1.
Notice that the function Q(t,z) = sin(t) + #r(x) satisfies (0; + a(t)X)Q(t,z) = q(t,z). By
Theorem 2.26 the operator

Laggo = 0+ V2X +1

is globally hypoelliptic (see Example 2.10) and then the operator
Lag = 0 + (sin(t) + V2)X + (cos(t) + (sin(t) + v2)h(z) + 1)

is globally hypoelliptic, which implies that L, is globally solvable.
For q(t, ) = cos(t) + (sin(t) + v/2)h(x) + 4, the operator

Laggo = O + V2X +1i
is not globally hypoelliptic (see Example 2.31) and then the operator
Lag = 0y + (sin(t) + V2)X + (cos(t) + (sin(t) + V2)h(x) +1)

is not globally hypoelliptic. However, since v/2 is an irrational non-Liouville number, the

operator L, is globally solvable, which implies that L, is globally solvable.
Example 3.28. G = S? x S3

In this example we will analyze a perturbation of the operator studied in Example 3.12.
Consider

L =X+ a(x)Xo + q(z1, 22),

where X acts in the first variable, X, acts in the second variable, a : S* — R expressed in
Euler’s angles by
a(r1(¢1,01,¢1)) = — cos (31) sin (¢1+w1) i \/—

and ¢ : S® x S* — C is given by

q(w1, 1) = pr(21) + a(x1) pa(a) + 54,



Variable coeftficient vector fields - Real case 75

where p; and p, are the projections of SU(2) ~ S? (see Example 3.23). Notice that Q(z1, 7o) =

2i(pa(x2) — p1(2)) satisfies
(X1 + a(21) X2)Q(z1, 22) = g1, 2) — i
By Proposition 3.24, we can extract the global properties of L,, from the operator
Lagge = X1 + V2X, + %ia
that we already have studied in Example 3.23. Therefore, the operator
L =X+ a(x1)Xs + p1(z1) + a(zq) pa(xe) + %Z

is not globally hypoelliptic but it is globally solvable.

Analogously, with a slight change in the definition of ¢, we conclude that
L= X1 + CL(;El)XQ +p1<l’1) + a(xl)pQ(xg) + 4112

is globally hypoelliptic, since the operator L = X; + v/2X, + ii is globally hypoelliptic (see
Example 2.32).
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Chapter 4

Variable coefficient vector fields - Complex

case

Let G be a compact Lie group and consider the operator L, : D'(T* x G) — D'(T' x G)
defined by

Lq = at + C(t)X + q,

where X € g, c € C®(T), ¢(t) = a(t) + ib(t), and ¢ € C. In this chapter, we will study the
necessary and sufficient conditions for the global hypoellipticity of this operator. Here we are
assuming that the first group is the one-dimensional torus because the study of the operator L,
leads us to solve a system of ordinary differential equations, which we only can solve in T*, for
now. The case where either c is a constant function or b = 0 was completely characterized in
Chapters 2 and 3. Recall that for each [n] € @, we can choose a representative 1 € Rep(G)
such that

UX(n)rs = Z./”LT(T])(ST& 1 S r,s S dT]a

where d,, = dim 7, and p,.(n) € R for all [n] € G.In Chapter 3, we have seen that when b = 0,
the global hypoellipticity of L, is strictly related to the global hypoellipticity of the operator

Ly =0 +apX +¢

because these two operator are conjugated by the automorphism

d’ﬂ
Voult,x) =Y dy ¥ e DA p), n,(2)
eG  ms=1
defined in (3.4). If we wanted to do the same in the case where b Z 0 we would not have the

B(t)

growth control of the term e~#~ (W5 that appears in the definition of ¥, Therefore ¥, is not an



Variable coeftficient vector fields - Complex case 77

automorphism. However, we will prove in Proposition 4.2 that the global hypoellipticity of L,
is a necessary condition for the global hypoellipticity of L, and at the end of the chapter we give
an example where this is not a sufficient condition. First, observe that by the automorphism ¥,

we may assume that a(t) is a constant function, so

Lq = 8t + (CLQ + Zb(t))X + q.

4.1 Global hypoellipticity

Consider the equation L,u = f € C°°(T! x G). Taking the partial Fourier coefficient with
respect to the second variable we obtain

~ —_

ft,n) = Lqu(t,n) = dyu(t,n) + c(t)ox(n)ult,n) + qu(t,n),

that is,
Ft,n)rs = Lyu(t,n)rs = Ocu(t,n)rs + i(pr(n)c(t) — iq)u(t, n),s, 4.1)
forl1 <r,s <d,.
Let
t 1 27
C(t) = / c(T)dr — cot, where ¢y = — c(T)dr.
0 27 Jo

Multiplying by e (MC®) we obtain

~

O (t, n)rse™ WD (1, (n)e(t) — iq)ult, n)pse™ MW = f(t,7),5eH MO

Then

~

) [ﬁ(t,U)rsei“’"(")c(t)}+i(ur(77)00 —iq)ul(t, n)rsei“"'(”)c(t) = f(t, n)rsei“”(”)c(t),
that is, for each 7 € G and 1 <r,s <d,, we have that u(t, n),s€*MC® is a solution of

O (t,m)rs + i(pr(n)co — iq)v(t,n)rs = g(t, M)rs, (4.2)

where g(t,n),s = f(t, 1) s MC® Tt follows from Lemma B.1, from Appendix B, that (4.2)
has a unique solution given by

1
1 — 6727ri(,uT

2T
_ —i(pr(n)co—ia) (4 _
v(t,n)rs = (Meco—iq) /0 € g(t — 7,m)rsdT,

whenever p,.(n)co — iq ¢ Z, or equivalently by
1

e2mi(pr(n)co—iq

21
Ut 7)rs = — / il e—ia)r g 4 7 o)
- 0



Variable coeftficient vector fields - Complex case 78

Therefore, we obtain

1
1— 6—27Ti(ur

21
Ut n)es = — e e wr(eor=CU=TTCD) f(¢ — 7 m),odr,  (4.3)
(n)co—iq) 0

or equivalently,

1

e2mi(pr (n)co—iq

2w
lt,n)rs = )_1/ ettt Er= OO F(t 7o) odr. (44)
0

In the remainder of this chapter we will need to control the behavior of the numerical se-
quence that precedes the integral in the expression above. For this end we will use the following

technical lemma, the proof of which can be found in Appendix B.
Lemma 4.1. Are equivalent:

1. There exist C, M > 0 such that
|k + copr (1) — g = C(|K] + ()™,
forallk € Z, ] € Gl<r< d,, whenever k + copi.(n) — iq # 0.
2. There exist C, M > 0 such that
1— eﬂﬂi(cwr(n)*iq” > C(n) ™M, (4.5)

forall[n) e G,1<r< d,,, whenever coi,(n) — iq ¢ Z.

4.1.1 Necessary conditions
Proposition 4.2. If L, is globally hypoelliptic, then L, is globally hypoelliptic.

Proof. Assume that L, is not globally hypoelliptic. By Theorem 2.26 we have two cases to

consider:

(1) The set
N ={(k,[n]) € Z x Gk + copr(n) — ig = 0, forsome 1 < r < d,}
has infinitely many elements or;
(ii) for all M > 0, there exists ky; € Z and [ny] € G satisfying
0 < [kar + coptr(mar) — dql < (|| + (nar)) ™,

for some 1 <r <d,,,.
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Case (i): Assume that there exists a sequence || € G such that cotr (M) — iq € Z, for some
1 <r <d,. forall k € N. We may assume without loss of generality that » = 1 for all
[ne] € G. Foreach k € N, let t;, € [0, 2] such that

= max / (Re (q) — pa(mo)b(s)) ds = / "(Re (@) — pu(ne)b(s)) ds.

te[0,2m
Set

ek exp {— fg(iul(nk)c(s) +q) ds} , if[n] =[m]andr = s =1,

0, otherwise.

a(tu 77)7"8 =

Since copq (n) — iq € Z, for all k € N, the sequence of functions {u(t,7),} is well-defined on

T!. Notice that

<1

[u(t, m)n| = < 1

e { = [ Rel)— mub(s) s}

by the definition of m;,. By Theorem A.5, we have that u € D'(T! x G). Moreover, we have

|a(tk7 77k)11| = 17

for all & € N. By Theorem A.4 we conclude u ¢ C*°(T' x G). Since each element of the

sequence {u(t,n),s} satisfies

Ou{u(t, n)rs} + i(pr(n)e(t) = ig){u(t, n)rsy =0,

for all [n] € é 1 <, s <d,, we conclude that L,u = 0, which implies that L, is not globally
hypoelliptic.
Case (ii): By the equivalence given in Lemma 4.1, we can construct a sequence [7] satisfying
forallk e N

0 < |1 — e 2rilcom ) =ia)| < (p,y=F (4.6)

forsome 1 < r < d,,. We may assume r = 1 for convenience of notation and cop; (1) —iq ¢ Z
for all k € Z, because N is finite.

For each k € N, choose ¢}, € [0, 27| such that

max / (2 ()b(s) — Re (q)) ds = / " (ua()b(s) — Re (q)) ds.

te(0,27]

Notice that with this choice we have

/t(ul(nk)b(s) —Re(q))ds <0, forallt e [0,27]. 4.7)

ty
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By the compactness of the torus, we may assume, by passing to a subsequence, that there exists
to € [0, 2] such that t;, — o, as k — oc.

Let o € C*°(T"') be a real-valued smooth function satisfying supp(¢) C I, 0 < ¢(t) < 1,
and ff” ©(s)ds > 0, where I is a closed interval in (0, 27) such that ¢y ¢ I.

Consider

f(t, e = Ck, €Xp {—i fti (1 (i) c(w) — iq) dw} o(t), if[n] =[nk],andr =s =1,

0, otherwise,

for t € [0,2n], where ¢; := 1 — e~2mi(com(m)=ia) Since supp(p) C 1, the sequence {f (¢, 1)y}

is well-defined on T*. Let us show that { f(¢,7),s} defines a smooth function on T* x G. For

o € N we have

}32’1? (t, 77k)11‘ - ]1 _ p2milcom (m)—iq)

Z (g) 8y exp {—i/t:(ul(nk)C(w) —iq) dw} 9 Bp(t)

B<a

By Faa di Bruno’s formula we have

oo =i [ Guinetw) )| = 5 Do {=i [[Gutetw) —inyaw}

b veas) b

—id] [, ( () e(w) — iq) dw) N
. ,

DG

B
where A(8) = {7 e Nji 3 g = ﬁ}-
]:
Since for all £ € N we have |u1(n)| < (nx) and Li(Re (q) — pa(me)b(w)) dw < 0, for all
t € [0, 27], we obtain
t
of exp { =i [ ulmletu) i) u} < Can)’
tg

for some C'3 > 0. By (4.6) we obtain

~

o f(t,me)1n| < Ca<77k>a_k7

for some C,, > 0. By Theorem A.4 we conclude that f € C*(T* x G).
Let us construct now a distribution v € D'(T* x G) \ C*°(T" x G) satisfying L,u = f. By
(4.3), set

-~

N 1 21 ) t )
u(t, me)n = =D /0 exp {—Z/ (c(w)pu () — 1q) dw} (t =7, mk) 11 d7
t—T1

1 _ 67271’1'(00/11
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and u(t,n),s = 0 for all the other cases. For ¢ — 7 > 0 we have

it = [ ew{i [ it —ig)du /t:_Tml(nk)c(w)z'q) twb olt—7)dr

—T

= exp {—i /t(C(w)m(nk) — iq) dw} /027r p(t —7)dr. (4.8)

ty

We have 0 < ¢(t) < 1, so by (4.7) we obtain

At )] < 27 exp { [ tmnto) - Re @) dw} <om.

For t — 7 < 0 we need to use the 2r—periodic extension of f on de definition of wu(t, 7y )11.

Hence,

it = [ e {=i [ tctwmntn)~ =i [ Gumlelw) ~ig) do |

X p(t—7+2m)dr
= exp {—@/t (c(w)py(e) — iq) dw + 2mi(copr (k) — zq)} /0 ' o(t — 7+ 2m)dr.

4.9)

Similar to the previous case, we have

[a(t, m)n| < 2w exp {2m(Re (q) = bopa (me)) } < 4,

for sufficiently large k&, where the last inequality comes from the fact that by (4.6) we have
|e=2micom(m)=ia)| — 1, when k — oc. By Theorem A.5, we have u € D'(T' x (). Notice that
if tg > sup [, then ¢, > sup [, for k sufficiently large, which implies that ¢, — 7 > 0, for every

7 € supp(p). By (4.8) we obtain

2
[t m)n| = / oty — 1) dr = @l > 0.
0

On the other hand, if ¢y, < inf I, we have for k£ sufficiently large. that ¢, < 7, for every

7 € supp(p). By (4.9) we have

2m
[u(te, mi)11| = exp {27(Re (¢) — boul(nk))}/ oty — 7+ 2m) dr > §|¢l 112y > 0.
0

By Theorem A.4 we conclude that u ¢ C>(T' x G). Therefore L, is not globally hypoelliptic.
[

For the next theorem we will assume an additional hypothesis about the eigenvalues of the

symbol of X. Precisely:



Variable coeftficient vector fields - Complex case 82

Hypothesis A: Assume that there exist 0 < C' < 1 and a sequence {[1;]}jen in @ such that for

all 7 € N we have
C(ny) < |pr(ny)l,

forsome 1 < r < d,.. We may assume without loss of generality that r = d,; and [d,, (n;) >0,

forall j € N. Hence, 114, (1;) % .

Remark 4.3. When G = T' and X = 0,, we have py(k) = k and (k) = 1+ k2, for all
k € Z. Thus

N[

(k) < [k| < (k), VkeZ\{0}.

For G = S?® and X the usual vector field that we are studying, we have uy({) = { and

(0) = \/14+L(L+ 1), for all ¢ € IN,. Therefore
S0y << (0), Ve ;3N

Theorem 4.4. Assume that b # 0 and that Hypothesis A holds. If L, = 0; + (ap +ib(t)) X + ¢

is globally hypoelliptic then b does not change sign.

Proof. Suppose that b change sign and by > 0. Consider
t+1 t+1
G(t,7) = / (ag + ib(w)) dw = agT —1—1'/ b(w)dw, t,T€0,2n]
t t

and define

to+7o
B = min Im(G(t,7)) =Im (G(ty,0)) = / b(w) dw.

0<t,r<2m "
Since b change sign, we have B < 0. Moreover, we can consider ¢, 7o € (0, 27) and b(0) # 0.
It can be shown that b(¢y + 79) = 0, which implies that t, + 79 € (0, 27).

Let ¢ € C°°(T*) such that supp(p) C [to + 70 — 0,0 + To + 0] C (0, o) with p(t) = 1 for
te€fto+71—0/2,t0+ 70 +9d/2]and 0 < p(t) < 1.

Let us construct a distribution u € D'(T! x G)\C™(T! x G) such that L,u = f € C>(T" x

(). From Hypothesis A, there exist 0 < C' < 1 and a sequence {[1;]};en in G such that
C{ny) < pa,, (n;), (4.10)
for all j € N. By Proposition 4.2 we have that L, is globally hypoelliptic. In particular, the set

N ={ne @; pr(n)co — iq € Z, forsome 1 < r < d,}
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is finite and we may assume that [1);] ¢ Z, for all j € N. Define

it creBrrn)p(t)e=tmrmiaolt=to) = if [n] = [n);], for some j € N,and r = s = d,,,
yN)rs =

0, otherwise ,
where &, = e2milrm)0=i9) _ 1 In order to prove that the sequence {f(t,7),,} defines a

smooth function in T! x G, it is enough to consider the representations [r;] and the components

r:s:dm.

Notice that

07 F(t,05) a0, ‘M yoia) _ ), () 3 @ o M gp o 1)
BLa

€2ﬂi(ﬂdnj (nj)co—iq) 1‘ eBl/«dnj (n5) Z (Z)

BLa

afe—iudnj (nj)ao(t—to)

IN

7 (t)|
Observe that

’62“(#47,]- (nj)CO_iQ) o 1‘ S ‘627”'(/‘%7]- (ﬁj)co—iQ) + 1 S eQﬂ(_Md”j (Uj)bo-i-Re(fI)) + 1 S C)

for some C > 0, because by > 0 and fid,, (n;) — oo. Notice that

’atﬁe—iudnj (nj)ao(t—to)

a ‘(—iudnj (nj)ag) e "o WU < Oy ().

Moreover, since B < 0, we obtain from (4.10)

eBl"dnj (n5) S eCB(T]]'>.

Hence,
107 F (8,13 ayy ;| < Cae®P) ()",

Since B < 0, for any N > 0 there exists C,,y such that

~

07 f(t.n)a,a,| < Can(n) ™.

By Theorem A.4, we conclude that f € C*(T* x G). If L,u = f, then

-~ —

F(t,n)rs = Lou(t,n)rs = 0u(t, n)rs + ip,(n)(ag + ib(t) — iq)u(t, n)y,s, (4.11)

forl <r,s, <d,. Since fid,, (nj)co —iq & Z, by (4.4) we obtain

~

1 2 . .
~ ) o qT WHdy . (n;)G(t,7) .
t,05)dyydn; = 2milkan; (nj)co—ia) _ 4 /0 e fE+7m5)psdr

27
— e_iudnj (Uj)ao(t—to)/ e(JTeudnj (nj)(B_Im(G(th)))SO(t + 7_) dT
0
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In all the other cases set u(t, n),s = 0. First, let us show that the sequence {u(t,7),s} defines a
distribution u € D'(T* x G), where
dU

U = d, U(t,n)rsNsr-
& 1

WIS 8=

In order to apply the Theorem A.5, it is enough to consider the case where [ = [r;] for
some j € Nand r = s = d,, because the other cases are well-controlled.

Let ¢ € C°°(T1), then

2m ) 2m
|(a(t7 nj)rsu 77Z))| _ / e_w‘inj (nj)ao(t—to) / eqTeud"J (nj)(B—Im(G(tﬁ)))gO(t + 7_) dT@D(t) dt
0 0

2 2
< / / Rela)T ftan; (1) B=Im(GEDN | 4oy it
0 0

< @2m)*[lellselltlloo

< Kpi(v¥)(n;)-

Notice that here we have used the fact that s, (n;)(B —Im(G(t,7))) < 1. Therefore u €
D'(T! x G). Consider the function
to+T
6(r) =B —Im(G(ty,7)) =B — /to b(w) dw.
We may consider § small enough in the properties of ¢ such that either cos(Im (¢)) or
sin(Im (¢)) does not change sign on (79 + J, 79 + 0). Assume without loss of generality that

sin(Im (¢q)) > 0 on (79 + §, 79 + ). Thus

2
/ e eHny () 4
0

|a(t07 T]j)dnjdnj ‘ -

T0+0
> / RO gin(Im (¢) 7)€l ™ (T“)e(T)(p(to +7)dr

T0—0

s Re(q)T o3 By (1;)0(T)
> e sin(Im (q) 7)e" dr
T0—6/2
TQ+6/2
> K M) qr.
T0—0/2

where we use the fact that 6(7) < 0, for all 7 € [0, 27], pq, (n;) < (n;) for all [1;] € @, and
there exists & > 0 such that e®*@7 sin(Im (¢) 7) > K on [y — 0/2, 79 + /2.
Let us analyze the behavior of the function

7'0+6/2
J(ny) = / )00 g

T0—06/2
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when (1;) — co. We have
to+70
9(7‘0)23—/ b(w)dw=B —B =0
to
and

9’(’7’0) = —b(to + 7'0) =0.

Thus by Taylor’s formula, we have
1 1
O(o + h) = 0(70) + &' (10)h + 56”(7-0 + 0(h))h* = 50”(70 + 0(h))h?,

forh € (19 —0/2,70 +9/2) and O(h) € [r9 — 0/2, 79 + 0/2]. Let
0" (y)

M = sup —=
T0—0<y<To+4

If M =0thend =0in [ry — §/2, 79 + d/2]. Thus

T0+0/2 T0+6/2 C
/ em)00) gr — / Ldr=0> ——,
T0—5/2 7'0—5/2 <77_]>

2

for some C; > 0.
If M > 0, then
1
—9(7’0 + h) = —59//(7'0 + Q(h))hz S Mh2

So
(n;)0(70 + h) > —M (n;)h?.

Thereby

T0+0/2 6/2 6/2 ) 02
/ Lm0 g / T g > / MO gy 7
T0—0/2 —6/2 —8/2 <nj>

for some Cy > 0. Considering C' = max{KC;, KC5}, we have
~ c
’u(t(]a nj)dnjdnj| > e,
V(1)
for all [n;] € @ such that 0x(n;) = pia,, (n;). Therefore u ¢ C>(T! x G).
The case where by < 0 is analogous to the previous one, but needs some adaptions. Here

we take

_ "
B = Ogr%}géc% Im (H(t,7)) =Im (H(t1,71)) = /tlT1 b(w) dw.

Since b change sign, then B>0.Forr=s= d,,, define

Ftm;)pe = (1— ¢~ 2milir (nj)eo—ia)) o = Biur(my) 5(4) g —ibr (nj)ao(t—11)

?
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where ¢ € C>(T") satisfies similar properties of . One can shows that f € C°°(T' x G) and
there exists u € D'(T' x G)\C*™(T' x G) such that Lyu = f. For this, define for r = s = d,,

2 _
ﬂ(t, T]j)"rs — e—i#r("?j)ao(t—h) / eﬂr(nj)(lm(H(t,T))—B)SE(t i 7_) dr.
0

The proof that u € D'(T' x G)\C™(T! x G) is similar to the previous case and it will be

omitted. ]

4.1.2 Sufficient conditions

In view of Proposition 4.2, from now we will assume that L, is global hypoelliptic. By

Theorem 2.26, this assumption implies that the set
N ={(k,[n]) € Z x G; k + copr(n) — ig = 0, for some 1 < r < d,} (4.12)
is finite and there exist C', M > 0 such that
|k + coptr () — ig| = C(IK| + (n) ™, (4.13)
forallk € Z, [n] € G.1<r< d,, whenever k + copi,(n) — iq # 0.

Theorem 4.5. Assume that L, is globally hypoelliptic and b #Z 0. If b does not change sign
then L is globally hypoelliptic.

Proof. Assume that b(t) > 0 for all t € T!. By hypothesis, by # 0, where ¢y = ag + ibo.
Notice that the global hypoellipticity of L,, implies that y,.(n)co — iq¢ € Z for only finitely
many representations. So there is no loss of generality to assume that j,.(n)co — iq ¢ Z.
Let f € C(T' x G) such that L,u = f, for some v € D'(T! x G). Let us show that
u € C™(T! x G).
Define
H(r,t) =cor —C(t — 1)+ C(t).

For p,(n) < 0, consider the solution (4.3):

1 2 ) R
” — —qr ,—ipr () H(Tt) _
u(t,n)rs = T o—ami =) /0 e e ft—7,m)sdr (4.14)

and for (1) > 0, consider the solution (4.4):

~

R 1 2m ]
Ut n)rs = - / ele IO £(4 4 7 ), odr (4.15)
0

e2mi(pr(n)co—igq
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Notice that
H(r,t) =cor —C(t—1)+ C(t)
t—T1 t
= CT — / c(w)dw + (t — 7)o + / c(w)dw — teg
0 0

_ /ttT o(w)duw

So, using the fact that b(¢) > 0, for all ¢ € T, we obtain

Im (H(r,t)) = Im ( /ttT c(w)dw) - /:T b(w)dw > 0. (4.16)
Im (H(—7,t)) = Im ( /tj c(w)dw) - /tj b(w)dw < 0. (4.17)

Notice that there exist X > 0 such that
|6:|:q7'| S K’
because 0 < 7 < 27. Let a € Ny and p,-(n)co — iq ¢ Z. If p.(n) < 0, by (4.14) we have
\Bo‘ﬂ(t 77) ‘ _ 1 2 P [e*qTe’i’“ n)H(T,t) f(t . 77) ]dT
t ) TS 1— e—QWi(Mw-(n)Co—iQ) 0 t ) T8

/27T|€—q7|za: o ‘356—iur(n)H(T,t)‘
0 =\ !

By the assumption of the global hypoellipticity of L,,, we obtain from Lemma 4.1 constants

1
‘ 1 — e—2mi(pr(n)co—iq)

IN

8?7’3]‘/’\(15 —7,M)rs| dT.

C, M > 0 satisfying
|1 . G_QM(MT'(H)CO_iq)rl S C<n>M7 (418)

forall[n) € G,1<r < d,,, whenever copi,.(1) — iq ¢ Z. By Faa di Bruno’s Formula, we have

85 —ipur(nH(tt) _ Z 6'< Ty (77))\'7\ —ipr(n)H(r,t) H <8]H 7 t > 7

|
YEA(B) v J=1

B
where A(3) = {’y eEND Y gy = B}. Hence,
i=1

(3JH7't

‘atﬁe—wrm)mt,t)

o' m(
< Z ?’M( n)|eprm1

veap) j=1

Notice that by (1.9) we have

| ()P < () < (),
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for all [n] € G 1<r< d,, and v € A(/3). Moreover, by (4.16) we have

el (M Im(H(T.0) < 1.

Thus,

‘35 —ipr () H(E1) o/ H (7,1)

o 3

YEA(B

By the continuity of the function H and the compactness of T*, for all 3 € N there exists

Cs > 0 such that
o’ H (1,t)

ZH

YEA(B

< U,

forall0 <t¢,7 < 2.
Let N > 0. Since f € C*(T' x G), by Theorem A.4 for every 3 < « there exists Cgn > 0
such that
07 P F(tm)is] < Clon () =V,

for all t € T, with M as in (4.18). Therefore,
1

2T [ a 4
—qT7 B —ipr(n)H(T,t)
‘1 — e—2mi(ur(n)co—iq) /0 le ’62_0 (ﬂ) ‘at e ‘

27 0‘
< KCmM / ( ) ()P Can ()~ VAT g

|02t 1) s | < 0y F(t — 7 m)rs| dr.

< Can <77>

We can obtain the same type of estimate when (1) > 0. In this case, it is enough to consider

the expression (4.15) to take the derivatives. We can adjust C,, v, if necessary, to obtain
’atOla(tu n)rs‘ < CaN<77>7N>

forevery [g] € G, 1 < r,s < d,. By Theorem A.4 we conclude that u € C*(T' x G). The
case b(t) < 0, for all ¢t € T, is totally analogue, just use (4.14) for p,(n) > 0 and (4.15) for

pr(n) < 0. H

We can summarize the results obtained in this chapter as follows:

Theorem 4.6. Let G be a compact Lie group and consider the operator L, : D'(T' x G) —
D'(T' x G) defined as
Lq = 8,5 + C(t)X +q,

where X € g, c € C(T?'), and q € C. Assume that
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a) b#£0;
b) Ly, = 0, + coX + q is globally hypoelliptic, where c, is the average of c;

c) there exist 0 < C' < 1 and a sequence {[n;]};en in G such that for all j € N we have

Cny) < lpe(n)l,
forsome 1 <r < dnj-
Then L, is globally hypoelliptic if and only if b does not change sign.

Example 4.7. Let G be a compact Lie group and q € i(R \ Z). The operator
Ly =0+ (" +1)X +¢

is globally hypoelliptic. Indeed, we have ITm (e" +1i) = sin(t) + 1 # 0 and the operator
Ly, = 0, +1X + q is globally hypoelliptic by Theorem 2.26 because in this case we have

N ={n) € Giip.(n) —iqe Z} = 2,

and
|k + ipe(n) —iql = |k —iq| = C,

for some C > 0, forallk € Z, [n) € G, 1 < r < d,. Since Im (e + i) = sin(t) + 1 does not
change sign, by Theorem 4.5 we conclude that L, is globally hypoelliptic.

Example 4.8. Let G = S® and X € s° a normalized vector field on S*. Let q € i(R \ Z), and
consider the operator

Ly =0+ (2" +9)X +¢q.

Notice that Tm (2e" + i) = 2sin(t) + 1 # 0 and the operator Ly, = 0, + iX + q is globally
hypoelliptic (see previous example). Moreover, we have seen in Remark 4.3 that condition c)
from Theorem 4.6 holds. Since Tm (2¢" + i) = 2sin(t) + 1 changes sign, we conclude that L,
is not globally hypoelliptic.
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Chapter 5

Constant coefficient vector fields

In Part I we have studied global properties for a class of operators defined in smooth func-
tions. The next step is to extend these results for other classes of functions. For instance,

in [1], [2], [3], [4], [8], [25] it was consider the Gevrey classes of functions.

Definition 5.1. Ler G be a compact Lie group and s > 1. The Gevrey—Roumieu class v*(G) is

the space of functions f € C*°(Q) for which there exist constants h > 0 and C' > 0 such that
10%f||22() < Chllalt®, o € NE.

We refer [11] for a detail study of these spaces on compact Lie groups. Notice that when
s = 1 we obtain the space of analytic functions on (G. These spaces are well-defined on G
because the compact Lie group G is an analytic manifold.

The Gevrey classes v*(G) is an example of a Komatsu class when we consider the sequence
M, = k!® (see Section 1.2) , so we have decided to extend the results from Part I to Komatsu

classes.

5.1 Global properties in Komatsu classes of Roumieu type
In this section we will study global hypoellipticity of the operator
L= Xl + CXQ

on Komatsu Classes of Roumieu type.
If we restrict the operator L = X; + c¢Xj to the Komatsu class of Roumieu type I’y Mk}(G)

we obtain an endomorphism, that is, L : I'(y;,1(G) — T'{az,3(G). In this way, we can extend
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the operator L to u € Iy, 1 (G) as
<Lu7 ()0> = —<U, L(10>> VQP € F{Mk}<G)

Definition 5.2. Let G be a compact Lie group. We say that an operator P : F’{ Mk}(G) —

F/{Mk}

imply that u € T 15, (G).

(G) is globally I'{ay,y-hypoelliptic if the conditions u € ', ,(G) and Pu € T'(a,3(G)

Theorem 5.3. The operator L = X + cXy is globally I'y;,y—hypoelliptic if and only the

following conditions are satisfied:
1. The set
N ={([&); ) € G1 x Ga; Am(&) + cin(n) = 0, for some 1 <m < de, 1 <7 < d,}
is finite.
2. VB > 0,dKpg > 0 such that
[Am(€) + cpr(n)] = K exp{=M(B((&) + (n))}, (5.1)
forall [¢] € é\l, n] € é\g, 1 <m <de, 1 <r <d,whenever \,,(§) + cu.(n) # 0.

Proof. ( <= ) Suppose Lu = f € I'jp,3(G) for some u € T'(y,3(G). Since N is finite, it is
enough to study the behavior of %(&, 9),,,,. outside of N. If ([¢], [n]) ¢ N, by (2.3) we have

E M, = —1 () + et ()™ F (& o

forall1 <m < d¢and 1 <r < d,. Thus

= &) + cttr )Y FE D)
< Oy exp{M(N({) + M)} F(E M,

| ;\1’;(57 n)mnrs

Since f € I'a,3(G), by (1.40) there exist constants C, N’ > 0 such that

< Cexp{=M(N'({&) + (m))}

76D,

Hence

< Cy exp{M(N({£) + (n)))} exp{ =M (N"((£) + (m))}-

’ 5(57 T])'rnnrs
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From (1.14), for N = %’, we obtain

exp{—M(N'({§) + (m))} < Aexp{=2M(N((£) + (m))}-

Thus
| G(E M), | < Cexp{=M(N((&) + (n)))},

Therefore u € I'(y,3(G).

( = ) Let us prove the result by contradiction. If (1) were not satisfied, by Lemma 2.2,
there would be u € D'(G)\C*(G), which implies that u € I'y,, ,(G) \ I'{a,}(G), such that
Lu = 0, contradicting the hypothesis of global I'{,,, ,-hypoellipticity of L. So, let us assume
that 2. is not satisfied, then there exists B > 0 such that for all K € N there exist [{x] € Gy

and [1)] € G, satisfying

0 < [An(&x) + eptr ()| < o exp{=M(N({x) + (i)}, (5.2)

for some 1 < m < d¢, and 1 < r < d,,.. We can suppose that ([x], [nx]) ¢ N and that

(&) + ;) < (&) + (ne) when j < L.
Let K € N and m and 7 such that (5.2) holds. Define

(A (Exc) + et (1)) ((€xc) + (1)), if mn = ml,rs =71

0, otherwise.

f(§K7 nK)mnm =
Let C' > 0 be obtained from (1.36) satisfying

((€x) + (nxc)) exp { =5 M (N ({€x) + (nx))) } < C,

for all K € N. Hence

| F (€] = Pan(€) + e () [ (Ex) + )
< oD {~M(N (&) + tme)))} ({€x) + x)

< Cexp{-M(N((§x) + (nx)))} exp{3M (N ((§x) + (nx)))}

< Cexp{—M(N (k) + (nK)))},

where N = & Thus f € T(y,,(G).

By (2.3) and (2.2), if Lu = f for some u € F’{Mk}(G), we have

Q(g ) —i({€x) + (nK)), ifmn=mlrs=r1
USK, K )mn,s =
0, otherwise.
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In particular,
Wk, M i | = (Ex) + (k). (5.3)
for all K € N. Thus

|5(£7 Mmnes| < (&) + (M),

for all [¢] € (/1\1, n] € (/}’\2, 1 <m,n <d¢and 1 < r,s < d,. Therefore u € D'(G) and then
u € I'y,1(G). By (5.3) u ¢ C°(G). Consequently u ¢ I'{3,}(G), which contradicts the fact

that L is globally I'{/,1-hypoelliptic. O
Corollary 5.4. If L is globally hypoelliptic, then L is globally Ty, y-hypoelliptic.

Proof. By Theorem 2.3, if L is globally hypoelliptic, the set \ is finite and there exist C, N’ >

0 such that
A (&) + cpn(n)] = C(() + ()™,

forall [¢] € Gy, [n] € Gy, 1< m < de, 1 <r <d,, whenever \,,(§) + cu,(n) # 0.
By (1.36), for every N > 0, there exits C'y > 0 such that

(&) + ()™ exp{—M(N((&) + (m))} < Cw.

Thus,
[Am (&) + cpr ()| > Cy exp{=M(N((£) + (n))),

for all [¢] € G, [n] € Go, 1 <m < de, 1 < r < d,, whenever \,,(§) + cu(n) # 0. By
Theorem 5.3 the operator L is globally I';s, -hypoelliptic.
O

For the case where M}, = k!, we obtain the class of analytic functions on G and we have
M (r) ~ r. Hence, we have the following characterization for the global analytic hypoellipticity

of the operator L:

Theorem 5.5. The operator L = X + cXy is globally analytic hypoelliptic if and only the

following conditions are satisfied:

1. The set
N = {([&],[n]) € é\l X é\z; Am (&) + cpr(n) = 0, for some 1 < m < d¢,1 <r <d,}

is finite.
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2. VB > 0,dKpg > 0 such that

A (&) + cpr(n)| > Kpexp{—=B((£) + ()}, (5.4)
forall [¢] € G, n] € Gay 1< m < de, 1 < r < d, whenever A\, (&) + cpi,(n) # 0.

Now, to define global solvability for the operator L in the sense of Komatsu classes, observe
that given an ultradifferentiable function (or ultradistribution) f defined on G, if u € D'(G) is

a solution of Lu = f, we obtain from (2.2) that

M) + cpte(n) = 0 = F(E, 7). = 0.

Therefore, let us consider the following set

K = {f € Uay (G); F(E,m)mns, = 0 whenever A () + cptp(n) = 0}

Clearly there are no u € I'y;, ,(G) satisfying Lu = f when [ ¢ K.
Definition 5.6. We say that the operator L is globally I}, \~solvable if L(I",, ,(G)) = K.

Notice that L(T",

(11,3(G)) € K and the next result give us the condition to obtain the other

inclusion.

Theorem 5.7. The operator L = X, + X is globally I Mk}(G)—solvable if and only if (5.1)

holds, that is, for all N > 0 there exists C'y > 0 such that

[Am (&) + cpr(n)| = Cn exp{—M(N((£) + (m))},

forall [§] € G, n] € Go,l1<m< de, 1 <r < d, whenever \,,(§)+cu.(n) # 0. Moreover, if

L is globally 'y, \(G)-solvable, for any admissible ultradifferentiable function f € I'{r1,3(G),

there exists u € I'(yg,1(G) such that Lu = f.
Proof. ( <= ) For each f € K define

~ 0, it A\, (€) + () = 0,
BN s = . i Am(8) - cpur () (5.5)

—i(Am (&) + cpr ()™ F(§,M)mn,,, oOtherwise.

Let us show that { (&, 7)pmn,. } is the sequence of Fourier coefficient of an ultradistribution

u € Iy (G) IE AL (E) + cpn(n) # 0, by (5.1) we have

B ] = An(€) + (] FE M|
<Cly exp {M(N((&) + M)} F(E M,
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Using the fact that f € I, ,(G), we conclude that for all N > 0 and N" > 0, there exist

Cnn' > 0 such that

| @& M) mn,.| < Crvnexp {M(N((E) + (1))} exp {M(N'((€) + (m))},

for all [¢] Eé\l, ] Ea\g,l <m,n<d¢and1 <r,s<d,.

Let D > 0. Choose N = N’ = £. Using (1.14) we obtain

‘ ﬁ(57 n)mnrs

< Cpexp {2M (7((&) + () }
< Cpexp{M(D({&) + (m))}-

Therefore u € I'y,, ,(G) and Lu = f.
( = ) Suppose that is not true, then there exists /N > 0 such that for all X' € N there exist

[NKS G, and K] € G satisfying

0 < Pa(€x) + emslmo] < o xp{=M(N({&x) + ()}, 56

for some 1 < m < dg, and 1 <7 < d¢,.. We can assume that (£;) + (n;) < (&) + (n¢) when
j < L. Consider f € IC defined by

A 1, if ([¢],[n]) = ([§], [n;]) for some j € N and (5.6) is satisfied,
FE& ) mn,, =

0, otherwise.

Suppose that there exits u € I'y,,,(G) such that Lu = f. In this way, its Fourier coefficients

must satisfy
i (€) + 1t (M) TE D mnrs = (€M mnrs-

So

B )i | = i (Exc) + (i) | F(Ere i |
> K exp{ M(N({¢x) + (1))}

which, by Proposition 1.41, implies that u ¢ Iy, ,(G). Therefore L is not globally solvable.
Let us now prove the last part of the theorem. Let f € K N '5,,3(G) and define v as in

(5.5). Since L is globally Ff{ Mk}—solvable, it holds (5.1) and then

< Cy exp {M(N((&) + M) H FE M,

‘ 5\1’2(57 n)mnrs

Y

forall [¢] € G, [n] € G2, 1 <m < de,1 <1 < d,. By (1.40), there exist C, N’ > 0 such that

|7 (€N ] < Cexp{=M(N'((€) + (n))}-
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By (1.14), we have for N = & that

| ﬁ(57 /r,)mn'r.s

&)+ () exp{—M(N'((¢) + (n)))}
&)+ ()} Cexp{—2M (B((&) + () }

forall [¢] € Gy, [n] € G2, 1 <m < de,1 < r < d,. Therefore Lu = fand u € T3 (G). O
As in the smooth case we obtain the following corollary in Komatsu classes:
Corollary 5.8. If L is globally I'{y;,\-hypoelliptic, then L is globally F'{ Mk}—solvable.

With the same proof of Corollary 5.4 we obtain the following class of globally Ff{ M

solvable operators:

Corollary 5.9. If L is globally C*-solvable, then L is globally F’{ Mk}—solvable.

5.2 Global properties in Komatsu classes of Beurling type

Analogously to the Roumieu type case, restricting the operator L = X; + ¢ X5 to the Ko-

matsu class of Beurling type I' (5, )(G) we obtain an endomorphism, that is,

L: F(Mk)(G> — F(Mk)(G)-

In this way, we can extend the operator L to u € I',, ,(G) as

(Lu, ) := —(u, L), Vo € T (G).

Definition 5.10. Let G be a compact Lie group. We say that P T',,(G) — ', (G) is
globally T (n,)-hypoelliptic if the conditions u € F’(Mk)(G) and Pu € T, (G) imply that
u € F(Mk)(G).

Theorem 5.11. The operator L = X, + cXy is globally Iy, )-hypoelliptic on G x G if and

only if the following conditions are satisfied:

1. The set
N = {(€,[n]) € Gy x Ga; An(€) + cn(n) =0, for some 1 <m < de,1 <1 < d,}

is finite.
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2. 4dB > 0, K > 0 such that
A (€) + cpir(n)] > K exp{—M(B((£) + (m))}, (5.7)

forall [¢] € G, n] € Gal<m < de, 1 <r < d, whenever \,,(§) + cu-(n) # 0.

Proof. (<= ) Suppose Lu = f € T'(,)(G) for some u € I'(,,,(G). Since NV is finite, it is
enough to study the behaviour of @(&, 1)y, outside of N. If ([¢], [n]) ¢ N, then

@A\(ﬁ, n)mnm == _Z(/\m(f) + Cﬂr(n)_l ?(57 77)mnm

forall1 <m < d¢and 1 <r < d,. Thus

B el = Pn(€) + e ()] F(E M|
< Cexp{M(N((E) + )} FE Noun.

Since f € I'(a,)(G), for every N’ > 0, there exists Cy» > 0 such that
| 7(6,m)llns < Crvr exp{—M(N'((€) + ()}
Hence
(€ Mnra| < Cor exp{MN((E) + ()} exp{—M(N'((€) + (n))}.
Fix D > 0. If N < D, then
exp{M(N((€) + (1)} < exp{M(D({€) + (m)))}.
forall [¢] € G1, [n] € G, because M is a non-decreasing function, as well the exponential. So
(€ M| < Cor exp{M(D((E) + (1))} exp{~M(N'({€) + ()}
Choose N' = DH. By (1.14) we have

exp{—M(DH({) + (1))} < Aexp{=2M(D((&) + (n)))}-

Thus

|G(E M) n,.| < Cp exp{M(D((€) + (n)))} exp{—=M(DH({&) + (n)))}
< Cp exp{M(D((§) + ()} exp{=2M (D({&) + (n)))}
< Cp exp{=M(D((&) + (n)))}-
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If N > D, choose N’ = NH. Again by (1.14),

exp{—=M(NH((§) + (1))} < Aexp{=2M(N({&) + (n)))}-

So

< Cexp{M(N((&) + (n))} exp{=M(NH((§) + ()}

|G, D) )

&)+ (m))} exp{=2M (N ((§) + (m)))}
)
)

—_—~ o~

(€)
< Cexp{M(N({£)
< Cexp{—M(N((£) + ()}
< Cexp{—M(D((¢) + (m))}-
Hence, for every D > 0, there exists Cp > 0 such that

| ﬁ(gﬂ n)mnrs

< Cp exp{=M(D((£) + (n))),

for all ([¢], [7]) ¢ N. Therefore u € I3, (G).

( = ) Let us prove the result by contradiction. If (1) were not satisfied, by Lemma 2.2,
there would be u € D'(G)\C*(G), which implies that u € I',,,(G) \ I'(ar,(G), such that
Lu = 0, contradicting the hypothesis of global I'(,,)-hypoellipticity of L. So, let us assume

that (2) is not satisfied, then for every K € N, we can choose a [£x] € Gyanda K] € G- such

that

0 < [Aa(€x) + cpr(ni)| < exp{—M(K(({x) + (1x)))}, (5.8)
for some 1 < m < dg, and 1 < 7 < d¢,.. We can assume that (£;) + (n;) < (&) + (n¢) when
Jj<t

Let A = {([¢], [7j]) } jen. It is easy to see that A has infinitely many elements. Define

~ L, if ([¢], [n]) = ([&], [n;]) for some j € N and (5.8) is satisfied,
u(&s M) mn,, =

0, otherwise.

By (1.43) and (1.45), it is easy to see that u € I'{;, (G)\I'(as,)(G). Let us show that we have
Lu=fe€ F(Mk)(G).
If ([¢], [0]) # ([&], [n;]) forany j € N then }”\(f,n) = 0. In the other hand, for every K € N,

we have

-~

| F (& )iin| = [Aa(Ex) + cpr ()| G(Ek, e )i |
< exp{—M(K(({x) + (nx)))}

Therefore Lu = f € I'(,)(G), which contradicts the hypothesis. O
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Notice that the conditions for the global I'y/, y —hypoellipticity of the Theorem 5.3 imply
the conditions for the global I'(;,,)—hypoellipticity of the Theorem 5.11. In this way, we have

the following corollary:
Corollary 5.12. If L is globally I' s,y —hypoelliptic, then L is globally T’ ;) —hypoelliptic.

For the study of global solvability in Komatsu classes of Beurling type, define

K:={f¢€ F/(Mk)<G)§ f(&n)mn,, = 0 whenever A, (§) + cpir(n) = 0}
So, if f ¢ K then there are no u € I\ | (G) satisfying Lu = f.
Definition 5.13. We say the operator L is globally I, \-solvable if L(I"(M},)(G)) = K.

We always have L(I';, ,(G)) € K. The next result give us the condition for the other

inclusion.

Theorem 5.14. The operator L = X, + cXs is globally F’( Mk)-solvable if and only if (5.7)

holds, that is, there exist C, N > 0 such that

A (§) + cpir(n)] > Cexp{—M(N((&) + (m))},

forall[§) € Gy, [n] € Ga,1 <m < de, 1 < r < d,, whenever A\, (&) + cu.(n) # 0. Moreover,
if L is globally F’( w,)-Solvable, for any admissible ultradifferentiable function f € I'( ) (G),

there exists u € I'(a,)(G) such that Lu = f.
Proof. (<= ) For each f € K define

0, if A (€) + cpr(n) =0,

u 57 Mnes PN
uew i () + it (1)~ F(E, M, otherwise.

Let us show that {ﬁ(f ,N)mn.. } 18 the sequence of Fourier coefficient of an ultradistribution

u € Iy, (G). We have by hypothesis that

= Ponl©) + ettr )Y FE D)
< Cexp {M(N((E) + M) FE )|

| i(&? n)mnrs

Using the fact that f € I\, (G), we conclude that there exist C', N’ > 0 such that

|G M, | < Cexp {M(N((E) + (1))} exp {M(N'((€) + (m))},
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for all [¢] € Gy, ] € Go, 1 <m,n<d¢and1 <r,s <d, Let D =max{B, N}, so

A& Mmn,.| < Cexp{2M(D((€) + (m))} < Cexp {M(D((€) + (m))},

where D = DH. Therefore u € Iy, (G) and Lu = f.

( = ) Suppose that is not true, then for any K € N there exist [{x] € G, and K] € Gs

satisfying
0 < Pl€10) + )| < = exp{~ MO (€) + (), 59)
for some 1 < m < dg, and 1 < 7 < d¢,.. We can assume that (£;) + (n;) < (&) + (n¢) when
Jg<Ut
Define

o 1, if ([€], [n]) = ([&], [nj]) for some j € N and (5.9) is satisfied,
f(&mMmn,, =

0, otherwise.

Notice that f € K. If Lu = f for some u € I'};, 1 (G), then

Uk MK ) ims = —i1 (M (Ex) + cpr(ng)) ™ ?(£K777K)fn1%1'
So

B i )min | = P () + ene(mi) 7Y F Eac i)
> K exp{ M(K ((&x) + ()},

which implies that u ¢ I, ,(G), a contradiction.
The proof of the last part of the theorem is analogous to the proof of Theorem 5.7 and then

its proof is omitted.

Similar to the smooth and Roumieu cases, we have the following corollaries:
Corollary 5.15. If L is globally Iy, -hypoelliptic, then L is globally F’( Mk)—solvable.
Corollary 5.16. If L is globally F’{ Mk}-solvable, then L is globally F’( Mk)-solvable.

We can summarize the last corollaries about the operator L in the following diagram:

GH — GF{Mk}H - GF(Mk)H

ﬂ ﬂ ﬂ (5.10)

GS = GIy,S = GTy,,S
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5.2.1 Komatsu levels

We can prove that the global I'y,, 3 (G)-hypoellipticity of the operator L implies its global

', ~hypoellipticity using what we will call Komatsu levels.

Definition 5.17. Let { M }ren be a sequence satisfying the conditions (M.0)—(M.3’) and let
N > 0. The Komatsu Level N of ultradifferentiable functions F]A\gk(G) is the space of C'™°

functions [ on G such that there exists C > 0 satisfying

~

1/ (9)llas < C'exp{—M(N{¢))},
forall[¢) € G, 1<i,j<d,
Notice that this definition is independent of the choice of the representative of [¢] € G.
Moreover, we have

Ty (@) = [JTHW,(G)  and  Toy(@) = [ TG (5.11)

N>0 N>0

Let us investigate how the operator L acts on Komatsu levels. For v € T'}; (G), we obtain
from (2.1)

e~

Lu(&,m)mn,, = 1((Am(§) + cpr(n)) i(& M) ims

By (1.11), we have |\, (§)] < (€) and |u.(n)| < (1), so we have

e~

I Zu(€ m)lus < C(E) + )€, )llus-

By (1.36), there exists C' > 0 such that (£) + (n) < Cexp{iM(N((£) + (n)))}. Using now
(1.14), we obtain

I Zu(e,lls < Cexp { =M (N((&) + ) }.

where N = & which implies that Lu € Fﬁk (G).

Assume that L is globally I'(5, y-hypoelliptic. In the proof of Theorem 5.3 we showed that
if Lu € T (G), then u € Fﬁk(G), where N = & Let us prove that L is globally I'(y,)(G)-
hypoelliptic. If Lu € I'(5,)(G), by (5.11) we get Lu € '} (G), for all N > 0 and then
u € FAN;,C(G), for all N > 0. Therefore u € I'(a1,)(G) and L is globally I'(,,)—hypoelliptic.

We also can prove that global I'(;;,1—solvability implies global I'(;;,)—solvability for the

operator L using Komatsu levels of ultradistributions.
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Definition 5.18. Let { M} }ren be a sequence satisfying the conditions (M.0), (M.1), (M.2) and
(M.3’) and N > 0. The Komatsu Level N of ultradistributions F']{}k(G) is the space of linear

functionals u such that there exists C' > 0 satisfying

16() [lus < Cexp{M(N(¢))},
forall[¢) € G, 1<i,j<d,

Similarly, we have

iy (@) = (TG and  T{,,(G) = |J IIL(G). (5.12)

N>0 N>0

Suppose that L is globally F’{ Mk}—solvable. In the proof of Theorem 5.7 we showed that if
f is an admissible ultradistribution and f € I'}} (G), then there exists u € F']\Z(G) such that
Lu= f,where N = NH.

Let us prove that L is globally I',, | —solvable. Let f € I, ,(G) an admissible ultradistri-
bution. By (5.12), f € I'}} (G) for some N > 0 and then there exists u € I'j) (G) such that

Lu = f, where N = NH. Therefore L is globally F’( Mk)—solvable.

5.3 Examples

In this section we will consider the sequence { My, }ren, given by M, = (k!)®, with s > 1.
So, the Komatsu class of Roumieu type associated to this sequence is the Gevrey space v°(G)

and we have that the associated function satisfies
1
M(r)~r / s,

for all » > 0.
In this framework we present a class of examples in T! x S? and in S* x S?. Examples of

operators defined on tori in Gevrey spaces can be found on [3, 8].
Example 5.19. G = T! x S3

Let
L = 8,5 +CX,

where ¢ € C and X € s® is a normalized vector field on S?. With a similar analysis to that

Example 2.10, we may assume that

ox(O)mn = 1Mo, L E %NO, —L<m,n<tl {—m,l—necN.
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In this case, we have
N ={(k,0) € Z x }Ng; k+cm =0, forsome — ¢ <m < {,{ —m € No}.

Notice that A has infinitely many elements, so by Theorem 5.3 the operator L is not globally
~v*~hypoelliptic, for any s > 1. Let us analyze the global «*—solvability of L. In order to L

satisfies Condition 2 of Theorem 5.3, for any B > (0 must there exist Kz > such that
Ik + cm| > Kpe (HH0Y" (5.13)

forallk € Z, ¢ € 3No, —¢ < m < {,{ —m € N, whenever k + ¢m # 0. Notice that this is
satisfied when either Im(c) # 0 or ¢ € Q. In the case where ¢ € R\ Q, the condition (5.13)
is satisfied if and only if c is not an exponential Liouville number of order s. For instance, in
Example 2.10 we showed that

L=0,+V2X

is globally solvable. By Corollary 5.9, we conclude that L is globally v®—solvable, for any
s> 1.
Consider now the operator

L:3t+aX,

where « is the continued fraction [10",10%,10%,...]. We proved in Example 2.10 that L is
neither globally hypoelliptic nor globally solvable, because in this case N has infinitely many
elements and « is an irrational Liouville number. However, « is not an exponential Liouville
number, for any s > 1 (see Proposition 6.2 of [3]). By Theorem 5.7, we conclude that L is

globally *—solvable, for any s > 1.
Example 5.20. G = S? x S3

Consider the operator

L :Xl +CX2,

where X, X, € 5% and ¢ € C. Here, we assume that the vector field X acts only in the first
variable, while X, acts only in the second variable. As seen in Example 2.11, the analysis
of this operator is similar to the analysis of the operator studied in Example 5.19. Hence, the
operator L is not globally ~*~hypoelliptic, for any s > 1. If Im(c) # 0 or ¢ € Q, the operator L
is globally y°—solvable, for any s > 1. When ¢ € R\ Q, the operator L is globally ~*—solvable

if and only if c is not an exponential Liouville number of order s. For instance, the operators

L=X4+V2X, and L=X;+ aX,,
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where a = [10",10%,10%, .. ], are globally y*-solvable, for any s > 1.

5.4 Low order perturbations
We can characterize the global hypoellipticity and global solvability of the operator
L=X+q,

where X € gand ¢ € C, on Komatsu classes, both Roumieu and Beurling type, similarly to the

vector field case. We say that L, is globally Iy, (G)—solvable if L, (I, (G)) = K,, where
Kq = {w € 'ty (G); W(E)mn = 0, whenever A, (&) —ig = 0}.
Analogously we define de global I'(,, ) (G)—solvability of L.

Theorem 5.21. The operator L, = X + q is globally T’ 5, \-hypoelliptic (respectively, globally
Lyar,y-hypoelliptic) if and only if the following conditions hold:

1. The set

~

N ={[§] € G; \n(§) —ig =0, for some 1 < m < d¢}
is finite.
2. AN > 0 (respectively, VN > 0) and 3C > 0 such that
(A (&) —ig| > Cexp{—M(N(£))},
forall [€] € Gl<m< de, whenever A, (€) —iq # 0.

Moreover, the operator Ly is globally Iy, )-solvable (respectively, globally I'¢y,\-solvable) if

and only if Condition 2. above is satisfied.

The proof is similar to the vector field case and it will be omitted. We also have (6.13) for

this case.
Example 5.22. G =T! x §3

Consider the following operator defined on T! x S3:

L=0+V2X +i}.
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In Example 2.31 we have seen that L is globally hypoelliptic. By Corollary 5.4, we conclude
that L is globally v*~hypoelliptic, for any s > 1.
Consider now the operator

L=0,+aX +ij.

We have seen in Example 2.31 that this operator is neither globally hypoelliptic nor globally
solvable because although the set N is finite, the fact that « is an irrational Liouville number
implies that Condition 2 of Theorem 2.3 is not satisfied. However, since « is not an exponential
Liouville number, we conclude that L is globally y*—solvable, for any s > 1. Similarly, we can
conclude that

L=0+aX +ix

is not globally v*-hypoelliptic, but it is globally v*—solvable, for any s > 1.
Example 5.23. G = S3 x S3

Let
L = X1 +01X2 —f-l%

be an operator defined on S* x S%, where o = [10",10%,10%, .. ]. In Example 2.32 we have
seen that the set AV for this operator has infinitely many elements, which implies, by Theorem
5.21, that L is not globally v*—solvable, for any s > 1. However, although L is not globally
solvable, by the fact that « is not an exponential Liouville number of order s, for any s > 1, we
conclude that L is globally y*—solvable, for any s > 1.

Consider now the operator

L:Xl‘l—OZXQ—{—Z&.

In this case the set N is empty and, again by the fact that o is not an exponential Li-
ouville number of order s, for any s > 1, we conclude by Theorem 5.21 that L is globally

~v*~hypoelliptic, for any s > 1.
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Chapter 6

Variable coefficient vector fields - Real case

6.1 Normal form

Let G'; and G5 be compact Lie groups and consider the operator L, defined on G := G XG5
by
Ly = X1 + a(r1) Xy,

where X; € g1, Xy € go, and a € Iy Mk}(Gl) is a real-valued function. Recall that for each

€] € é\l , we can choose a representative £ € Rep(() such that

0x, (g)mn = 2)\m(€>5mn7 1 S m,n S d£7

where A\, (¢) € Rforall[¢] € Giand 1 < m < de. Similarly, for each [n] € G, we can choose

a representative 17 € Rep((G'y) such that

UX2 (77)7“5 = iluT(n>57“Sy 1 S T, S S d']’]7

where 11,(n) € Rforall[n] € Goand 1 < r < d,.

Now assume that there exists A € I'{3;,3(G1) such that
XlA(.Tl) = CL(Il) — Ao,

for all 1 € GGy, where

ao ::/ a(xy) dry.
G1

By the definition of ultradifferentiable functions, there exist K, ¢ > 0 such that for all
o € NI holds
0“A(z1)| < K0\ M),, Vz, € Gy.
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Since M, < AH'O‘|M1M|Q|,1, we obtain for all non-zero o € Ngl
0%A(2))] < KO Moy, Vo, € Gy, (6.1)

where K = K''HAM, and ¢ = ('H.
Similarly, if A € I Mk)(Gl), for any ¢ > 0 there exists K, > 0 such that for all non-zero
o € N holds

0“A(z1)] < Kl Moy,  Va; € Gy (6.2)
Define the operator V¥, as:
dy
U, u = Z d, Z ei’“(")A(')ﬂ( M) s M- (6.3)

meGz =
In Section 3.1 of Chapter 3 it was proved that U, is an automorphism of C*°(G) and D'(G),

with inverse W_,. Moreover, it holds
V,0L,= Ly 0¥, (6.4)

where L,, = X1 + apXo.

Since the operator L, is the same as in Chapter 3, the expression (6.4) remains valid in
Komatsu classes. In the next results, we present sufficient conditions for the operator ¥, be
an automorphism in the space of ultradifferentiable functions and ultradistributions of both

Roumieu and Beurling types.

Proposition 6.1. Let a € T';y;,3(G1). Then the operator V,, defined in (6.3), is an automor-
phism of 3,3 (G % Ga).

Proof. 1t is enough to show that W,u € I'13,3(G1 x G2) when u € '3 (G x G). By
the characterization of ultradifferentiable functions of Roumieu type from their partial Fourier

coefficients, there exist C, h, ¢ > 0 such that
|0°T(w1,m)ps| < CR*I Mo exp{—M(e(n))}, (6.5)
foralla € N, 2, € Gy, n] € é\g and 1 <r,s < d,. Notice that
Tou(wr, n)ys = e#r ATz ),

Thus, for a € Ngl we have

‘aa@(ﬂfbﬁ)rs\ = ‘aa (emr(n)A(xl)a('rlan)rs” < Z <Z> ‘0ﬁ€wr(n)A(m)‘ ‘aaiﬁiﬂxlan)rs‘ .
BLa
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Using that |u,(n)] < (n) and (6.1), we have by Faa di Bruno’s Formula that

Py x1\<|i[(’“ sk (3 (W) 1 ﬁ
)

AEA(|Bl.k
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where A(|S],k) = {\ € N¥;|\| = |Bland \; > --- > A, > 1} and 7(\) € NZ', where 7()\);

counts how many times j appears on .

By property (M.4) of the sequence { M, }ren, We obtain

IBI g Bl af. i Mk

for A € A(|5], k). Using the fact that

2 r(l)! B (’?—_11)%’

AEA(|B].k)

we have

18]
B pitir () Al |5| 18—k Mlﬁl k
9 '<Z< ) KA P8 g =

By (6.5), we have

T o o u Bl =1\ 1 k o8-k
g \Ifau(arl,n)m|SCZ<B>Z(]€_1)HK (m)*e

B<a k=1

< 1Bl mﬁ' ‘“) RI 8 M 5y exp{—M ((n))}

By Proposition 1.35,

(0" exp{-1(e(a)) < 4 (£ ) Mexp{-dr(etr= ).

So,
02T u(zr, ) < ACY (O‘) f: (‘m - 1) <KH>kglﬁhal—lﬁ
aU\T1,M)rs| > -
= I} — k—1 le
M,

‘6“(’6||B| k)| k|kM|a| \5|exp{—M(€<77>)}.

Notice that
Mg My

M,
81 ey gt M-t < 1B Mot < M

Denote by S = max{£Z ¢}. Thus

8
0T u(1, )] < ACY (g) SR M exp{—M (e H ™ ()} Y (

B

6l —1

k—1

(6.6)

(6.7)

(6.8)

(6.9)

)
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18l
We have > ('/,f‘__ll) = 2181-1 Moreover,
=1

|al

S (g) (25)/Iple=18 = § (;ZD (29) PRl =18l = (25 + Rl (6.10)

BLla |8]=0
In this way
0T (w1, m)ss| < AC (28 + 1) Moy exp{—M(eH ' (n))}.
By Theorem A.8 we conclude that W,u € I'(y;,1 (G % Ga). O

Proposition 6.2. Assume that a € I'(y,)(G1). Then U, is an automorphism of I 51,y (G x Ga).

Proof. Letu € T'(yr,)(G1 X G3). By (6.1) we have that
0“A(z1)| < Kl Mio_1, Va1 € Gy
By Theorem A.9 for all h, e > 0 there exists Cp. > 0 such that
|0“U(z1,m)rs| < C’hgh‘o‘|M|a‘ exp{—M (e(n))}, (6.11)

forall o € Ni', 2, € Gy, [] € Goand1 <715 < d,. We can follow the proof of Roumieu

type case and obtain

|8a‘1/ja\u(x17 T])rs| S Ohs (25 + h>|a| M\a| eXP{—M(EH_1<77>)},

where S = max{K’;H,E}. Given j,0 > 0, choose { = % and ¢ = max{éH, U(J?H}. Thus
S = % and

exp{—M(eH " (n))} < exp{=M(3(n))},

for all [5)] € Gs. Hence
0" Wgu(r, m)ys] < AChs (4 +h)'™ Mioj exp{—M(6(n))},
Choose now h = % Therefore
0", m)ra] < Caf'™ Miaj exp{=M (3())}
which implies that U,u € Ty, (G1 x Ga). O

Proposition 6.3. For a € I'1y;,1(G1), the operator ¥, is an automorphism ofFf{Mk}(Gl x Gg).
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Proof. Most of the estimate that we will use here was proved in the demonstration of Theorem
6.1. Let us show that ¥ ,u € F{M }(Gl X G9) when u € F’{Mk}(Gl X (). By the characteriza-
tion of ultradistributions of Roumieu type (Theorem A.10) for all i, ¢ > 0, there exists C,. > 0

such that
(@, n)rss ) < Chellllnexp{M(e(n))}, Ve € Ty (Gh).

In this way, for ¢ € I'p,3(G1), we have

<\Pau('77])7"57@> = <€wr(n)A(~)a(_777>rs790> = <a<'777>7"57eiur(n)A(')(,D>.
Hence,
<“ Jrs» € ethr(MAL) 90> < Che Hel“”(" g0||hexp{M( (nM}.

Notice that
}(9a (eiur(n)A(xl)@(xl))‘ < Z (g) ‘(‘}Beiur(n)A(t)‘ ‘aafﬁsp(t)‘ )

By (6.7), using that |01*/ A(z)| < Kf'a‘*le_l, we obtain

|8l
: — Mg
B iur(n)A(z1) < 2 : |6| Iy 1 {;(k EplBl—k| N 18—k

k=1

By Proposition 1.35,

()" exp{M(e(n)} < Ae™* My exp{M(He(n))}

and then by the property (M.4) we obtain

1B

0% (e A () [ exp{M ()} < A (g) 3 (Iﬁl - 1) (_)kgmMml 6.12)

B<a =1

x |01 1Plp(21)| exp{M (He(n))}

Let S = max {%,E}, then for any j > 0 we have

18]
|0 (e MAE) o(2y)) [ exp{ M (e(n))} < A ( )Sme' CEREFENDS (Ii|_—11>
k=1

B<a

x exp{M(He(n))}

<AZ( ) (28)°! Migy llll; 5117 Moy

B<a

x exp{M(He(n))}
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Using the fact that Mg M5 < M), and (6.10), we obtain
[0 (DA (1)) | exp{ M (=(n))} < A (25 + 1) | ]l; Miaj exp{M(He(n))}
Given j,0 > 0, choose ¢ = % and then h = 25 + 5. Notice that

| MAO || exp{M(e(n))} < Allll; exp{M (6(n))},

then we conclude that

(TatC o) | < helle P40 exp(M(cn)))

< Csllpllj exp{M(6(n))}.

Therefore W,u € I'y),,(G1 x G>) and then ¥,, is an automorphism. O
Proposition 6.4. For a € I'(y,)(G1), the operator W, is an automorphism of I' . (G1 X Go).

Proof. Let us show that W,u € I'(;, (G x Ga) when u € I, (G1 x G3). By the charac-
terization of ultradistributions of Beurling type (Theorem A.11) there exist h,e,C' > 0 such

that
[(@( s, )| < Cllollnexp{M(en)}, Ve € gy (Gr).

In this way, for ¢ € I‘(Mk)(Gl),
<\Pau(.’ 7])7‘5, S0> = <eiﬂr(7l)14(')a(_7 7])7’57 §0> = <a<7 7])7’57 €wr(n)A(')§0>.

We have
(U(+, n)ps, €M DA ) < O DA ||, exp{ M (e(n))}.

Following the proof of the Proposition 6.3, by the fact that a € I'(;,)(G1) we obtain

e A0 plla; exp{M (e(n))} < Allpll; exp{M(He(n))},

where S = max {ﬁ, 14 } . Now, choose ¢ = % and consider ¢ sufficiently large such that S = /.

For j = %, we obtain

(Waulm)res ) < Clle O], exp{M(e(n))}

< Cllelln exp{M(He(n))},

which implies that W,u € I';, (G1 x Ga). O
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6.1.1 Global Komatsu hypoellipticity and solvability

Let us turn our attention to the study of global properties of the operator L, defined on the

compact Lie group G := G; x G5 by
La = X1 + CL(LEl)XQ,

where X; € g1, X5 € g9, and a € (1,1 (G4) (or a € T'(yy,)(G1)) is a real-valued function.

Recall that L,, = X + agX5, where ay := fGl a(zy) dzy. Now, if Lyu = f € Ff{Mk}(G),

for some u € Iy, ,(G), then

i((€) + aoptr ()3 E M, = f (€7

for all [¢] € é\l, n] € é\g, 1 <m < dgand 1 < r < d,. In particular, f belongs to the

following set

Ko :={g € F’{Mk}(Gl x Gy); /ﬁ(ﬁ,n)mnm = 0, whenever \,,(§) + aou,(n) = 0}.

In order to study the solvability of the operator L,, assume that L,u = f € Ff{ My} (G x G3)
for some u € I'y,,,(G1 X Ga). We can write u = W_q(Vqu), $0 Lo(V_o(Vqu)) = f. Thus,

using the fact that ¥, o0 L, = L,, o ¥,, we obtain V_, L, ¥, u = f, that is,
Lo Vou=Y,f.
This implies that ¥, f € K,, and motivates the following definition:

Definition 6.5. We say that the operator L, is globally I, \~solvable if Lo (I Mk}<G1 X
Go)) = T, where
T = {U € F/{Mk}(Gl X G2>§ Vv e ICao}'

Similarly is defined these global properties for Komatsu classes of Beurling type. Using the
results from the previous section, we obtain the following connection between the operator L,
and its normal form, which proof will be omitted because is the same of the smooth case (see

Proposition 3.7).
Proposition 6.6. Let a € I'(y;,1(G1) (respectively, a € T'(a,)(G1)) then:

1. the operator L, is globally I (y;,\-hypoelliptic (respectively, Iy, )-hypoelliptic) if and only
if La, is globally T'np,y-hypoelliptic (respectively, 'y, )-hypoelliptic);
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2. the operator L, is globally I'yp,y-solvable (respectively, Iy, )-solvable) if and only if Ly,
is globally I' ¢y, 1-solvable (respectively, Iy, )-solvable).

From the automorphism ¥, we recover for the operator L, the connection between the
different notions of global hypoellipticity and global solvability, obtained in Chapter 5, for

constant coefficients vector fields, summarized in the following diagram:

GH — GF{Mk}H — GF(Mk)H

ﬂ ﬂ ﬂ (6.13)

GS = Gl S = GI,, S

Notice that we need to assume that a € I' (5, )(G) for the implications involving Komatsu classes

of Beurling type.
Example 6.7. G = T! x S3

Consider the continued fraction o = [10",10%,10%,...] and a normalized vector field

X € 5. Let L, be the operator defined as
La == 8t + a(t)X,

where a(t) = sin(t)+a. Notice thata € v*(T!), forall s > 1 and the function A : ¢ — — cos(t)
satisfies 0;A(t) = a(t) — a. By Proposition 6.6, we can study the global properties of L, from
the operator

Lao = 3,5 + OéX

In Example 5.19 we have seen that the operator L, is globally y°*—solvable, for any s > 1. In
addition, since « is a Liouville number, the operator L, is not globally solvable in the smooth
sense (Example 2.10).

We conclude then that the operator L, is neither globally v*-hypoelliptic nor globally solv-

able in the smooth sense, but L, is globally v*—solvable, for any s > 1.
Example 6.8. G = S3 x S3

Consider the operator

Lh = X1 + h(JIl)XQ,

where X, X, € 63, I is expressed in Euler’s angle by

h(z1(¢1,01,¢1)) = — cos (%1) sin (%) + a,
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where 0 < ¢; < 21, 0 < 07 < m, 27 < 91 < 2w, and « is the continued fraction
[10M,10%,10%,...]. Moreover, we will assume that the vector field X; acts only in the first
variable, while X acts only in the second variable. Since Xtr(z;) = h(x;) — «, with tr as in

Example 3.12, it is enough to understand the global properties of the operator
Lho = X1 + O{XQ

for the study of the global properties of L. In Example 2.32 we have seen that the operator Ly,
is globally v*—solvable, for any s > 1. In addition, since « is a Liouville number, the operator
Ly, 1s not globally solvable in the smooth sense (Example 2.11).

Therefore, the operator L; is neither globally v*~hypoelliptic nor globally solvable in the

smooth sense, but it is globally v*—solvable, for any s > 1.

6.2 Low order perturbations

The next step for the study of low order perturbations is to consider the operator L, := X +q,
where ¢ € I'(7,1(G). The idea is to establish a connection between the global hypoellipticity
and the global solvability in Komatsu sense of L, and L,, = X + g, where q is the average of
qin G.

In [5], Bergamasco proved that the operator
L, =0+ a0, +q,

where a € R is an irrational non-Liouville number and ¢ € C°°(T?), is globally hypoelliptic
if and only if it is the operator L,, = 0; + a0, + qo, Where ¢y = fTQ q(t,z) dxdt. The key
to make this connection is the fact that L, 0 e=? = ¢ 9 o L, where ) € C*°(T?) satisfies
(0p + a0,)Q = q — qo. The existence of such () is guaranteed by the global hypoellipticity of
the operator 0; + a0,.

For the study of the operator L = X + ¢, with ¢ € I'{;7,1(G), we can not assume the global
hypoellipticity of X in view of the Greenfield-Wallach’s conjecture. Hence, we will assume as

hypothesis that there exists Q) € I'{;,3(G) such that
XQ =4 — Yo,

where gy = [, ¢(z) dx.
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From Proposition 3.16, we have
Lyo e ?=¢"%0 L, (6.14)

in C*°(G) and D'(G). The aim of the next lemma is to extend this conjugation to Komatsu

classes.
Lemma 6.9. If f € F{Mk}(G), then e/ € F{Mk}(G).

Proof. By the characterization of ultradifferentiable function of Roumieu type, there exist
C, h > 0 such that
07 f(@)] < ChI* M,

forall « € N¢, z € G.

Let o € N such that || = p. We have that

P k
o f () 1) K py_1
e < [ 3 Z)(A)T(A)!HMM ,

AEA(pk
where A(p, k) = {\ € N¥;|\| = pand \; > --- > )\, > 1} and 7()\) € NZ, where r()\);
counts how many times j appears on \. For example, A = (2,2,1,1) € A(6,4) and r(\) =

(2,2,0,0,0,0). Since (}) = by property (M.4) we obtain

/\1' /\k"
k
p T M My _
() ILan, = 15y IR
j=1 j=1
Then
p
1
a f(x) P k
0%/ @ < KhM, Y CF > o]
k=1  XeA(p.k)
We have that

ijck Z’ r(lx)! B zp: (Z:D%

k=1

p
Therefore, >° C* L < 27¢Y and we obtain
k=1 AEA(p,k) '

0% @ | < K(2h) M,
which implies that e/ € Ty, 3(G). O

Remark 6.10. With a slight modification in the above proof it is possible that ¢/ € ') (G)
whenever f € Ty, (G).
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From Lemma 6.9, we obtain that e“v € Ty, 1(G), whenever v € I'gy;,3(G). Moreover, for
u € T, (G), we also have eQu € I 3,1(G). The equality (6.14) motivates us to define the

global I (M} —solvability of L, as:

Definition 6.11. Let G be a compact Lie group, X € g, and Q € U'3,3(G). We say that the

operator

Ly=X+gq,

where XQ = q — qo, @0 = [ 4(v) da, is globally T, \—solvable if L,(D'(G)) = J,, where
= {v e 'y, (G); e%v € Ky}

Proposition 6.12. Let G be a compact Lie group and consider the operator L = X + q, where
X € gand q € Ty, (G). Assume that there exists Q) € I,y (G) satisfying XQ = q — qo,
where qo = |, o 4(v) dx. The operator Lq is globally I'(y,—hypoelliptic if and only if Ly, is
globally T'yr,y—hypoelliptic. Moreover, the operator Ly is globally 1"y, \—solvable if and only
if Lg, is globally T' ¢y, y—solvable.

Proof. The proof is analogous to the demonstration of Theorem 3.7. [
Corollary 6.13. If L, is globally Iy, ,—hypoelliptic, then L is globally I'y;,\—solvable.
Example 6.14. G = T! x S3

Consider

L, =0+ aX +q(t,x),

where o = [10",10%,10%,...] and q(¢,z) = cos(t) + h(z) + i, where h is expressed in
Euler’s angles by
hx(¢,0,v)) = —cos (&) sin (£54) .

Notice that ¢ is an analytic function, which implies that ¢ € *(T' x S?) for all s > 1. Let

Q(t,z) = sin(t) + Ltr(x), where tr is the trace function given in Euler’s angles by

tr(z(¢, 0,v)) = 2cos (%) cos (£52) .
The vector field X is the operator 0, in Euler’s angle and we obtain Xtr(z) = h(x). Hence,

(at + CYX)Q(tv JZ) = Q(tv (ﬂ) - %ia
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and by Proposition 6.12 it is enough to study the global properties of
Ly = 0+ aX + 3i.

In Example 5.22 we have seen that L, is not globally ~*~hypoelliptic but it is globally ~*—
solvable, for any s > 1. In addition, in Example 2.31 we have seen that the operator L, is not

globally solvable in the smooth sense. Therefore, the operator

Ly =0, + aX + cos(t) + h(z) + 1

is not globally y*~hypoelliptic but it is globally ~*-solvable, for any s > 1. Moreover, L, is not

globally solvable in the smooth sense. Similarly, we can conclude that
Ly =0, + V2X + cos(t) + h(x) + Li

is globally ~*~hypoelliptic, for any s > 1, because in Example 5.22 we have seen that the
operator L, = 0, + V2X + %z has this property.

Consider now the operator
L, =0+ aX+aql(tx),
where ¢;(t, z) = cos(t) + h(z) 4+ «i. Analogously to the previous example, we have
(0 + aX)Q(t,z) = q(t,x) — i
and by Proposition 6.12, it is enough to study the operator
Ly, = 0 +aX +ia.

This operator was already completely characterized in Examples 2.31 and 5.22. Hence, we
conclude that

L, = 0+ aX + cos(t) + h(x) + ai

is not globally y*~hypoelliptic but it is globally ~*-solvable, for any s > 1. Moreover, L, is not

globally solvable in the smooth sense.
Example 6.15. G = S3 x S3

Let us analyze the same operator studied in Example 3.23. Consider

L=X+ \/§X2 + Q(x17x2)7
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where X acts in the first variable, X acts in the second variable, and g : S* — C is expressed

in Euler’s angles by

q(z1,72) = p1(21) + \/ﬁpz(Iz) + %17
where p; and p, are the projections of SU(2) ~ S given in Euler’s angle by
pr(x(9,0,9)) = cos (§) 2 and  py(a(¢, 6, ¢)) = isin (§) O,

with 0 < ¢ < 27,0 < 0 < 7, =27 < @ < 2m. Notice that ¢ is an analytic function, so
q € v¥(T' x S3), for any s > 1. Moreover, the function Q(z1,7s) = 2i(pa2(x2) — p1(z1))
satisfies

(X1 + V2X0)Q(21, 22) = g1, 19) — %Z

The set \V for the operator
Lo = X1+ V2Xy + %

has infinitely many elements (see Example 2.32), so L is not globally y*~hypoelliptic, for any
s > 1. Since Ly is globally solvable in the smooth sense, we conclude by Corollary 5.9 that L

is globally v*—solvable, for any s > 1.

6.3 The general case

We can use the results about perturbations of constant coefficient vector fields presented in

Section 6.2 to study the operator L,, defined on G; x G4 by
Log = X1 4 a(x1) Xy + (21, 72),

where a € I'(y;,1(G1) is a real-valued ultradifferentiable function and ¢ € I'5,,3(G1 X Ga).

As discussed in Section 6.2, we will assume that there exists () € 'y, (G1 X G) such that
(X1 +a(z1)X2)Q = ¢ — qo,
where ¢ is the average of ¢ in G; x G5. We have that e? € a3 (G1 x G3) and
€9 0 Loy = Lag, 0 €9,
where L., = X1 + a(z1)X2 + ¢o. Now, we obtain

\Ila © Laqo - Laoqo o \Ijaa
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where L4, = X1 + ap Xy + qo. Therefore,
U,0e?o0 Log=Wq0 Lgg, 0 eQ = Loygo 0 Wy 0 e“.
The next result is a consequence of what was done previously.

Proposition 6.16. The operator L, is globally T'{y;, ,—hypoelliptic if and only if Lq, is glob-
ally I 1pr,y—hypoelliptic. Similarly, the operator L, is globally T'(yy, —solvable if and only if
Layg, is globally T'( s, ,—solvable.

Example 6.17. G = T! x §3

Consider

Laq = at + a’(t)X + Q(tv CL’)

where X € s%, a(t) = sin(t) + o, and q(t, ) = cos(t) + (sin(t) + a)h(x) + 3i, where h is

expressed in Euler’s angle by

h(x(¢,0,1)) = — cos (§) sin (£52) ,

where 0 < ¢ < 27,0 < 0 < 7, =271 < ¢ < 27. Notice that ¢ is an analytic function, which
implies that ¢ € y*(T" x S?) forall s > 1.
The vector field X is the operator 0, in Euler’s angle and we have that Xtr(z) = h(z),

where the trace function tr is expressed in Euler’s angle by

tr(x(¢p,0,1)) = 2 cos (g) cos (#) .

The function Q(t, z) = sin(t) + tr(z) satisfies

(0 + a(t)X)Q(t,x) = q(t,z) — Li.

By Proposition 6.16, the operator
Log = 0p + (sin(t) + @) X + {cos(t) + (sin(t) + a)h(z) + i}
is globally v*~hypoelliptic if and only if
Lagge = O0r + aX + 31

is globally v*~hypoelliptic. In Example 5.22 we have seen that L, is globally v*~hypoelliptic,

for any s > 1. We conclude that L, is globally v*~hypoelliptic for any s > 1, which implies
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that L,, is also globally v°—solvable, for any s > 1. In addition, the operator L, is neither
globally hypoelliptic nor globally solvable, because L,,,, has these properties.

Similarly, the operator
Log = 0 + (sin(t) + a) X + {cos(t) + (sin(t) + a)h(z) + ai}
is not globally v*~hypoelliptic but is globally v*—solvable because
Loyg =0 +aX +ai

has these properties. Again, the operator L, is neither globally hypoelliptic nor globally solv-
able.

Example 6.18. G = S3 x S3

Consider the operator
th = X1 + h(ﬂfl)XQ + Q(.flfl, .1'2),

where ¢ is given by:
q(w1, w2) = pr(x1) + h(21)pa(w2) + §i
where p; and p, are the projections of SU(2) ~ S?* given in Euler’s angle by

pi(x(6,0,9)) = cos (§) e @T/2 and  py(x(9,0,4)) = isin (§) e'@7V)/2,

where 0 < ¢ < 27,0 < 0 <7, —27 < 9 < 27. As in Example 3.23, the function Q(z1, x2) =

2i(pa(x2) — p1(2)) satisfies
(X1 + h(21) X2)Q(1, 22) = q(x1, T2) — 50

Since Q is analytic, we have that Q € 7*(S? x S?), for any s > 1. By Proposition 6.16, we can

extract the global properties of L, from the operator
Lhoqo = X1 + OzXQ + %Z

We have seen in Example 5.23 that the operator Ly, is globally v*~hypoelliptic for any s > 1,
but is not globally solvable (in the smooth sense). By Proposition 6.16, the operator Ly, has

these same properties.
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Appendices

A Partial Fourier series

Let G; and G5 be compact Lie groups, and set G = GG; X (5. Consider the representations
¢ € Hom(Gq, Aut(V})) and n € Hom (G, Aut(1%3)). The external tensor product representation
¢ ®@nof GonV; ®V,is defined by

§®772 G xGy — Aut(V1®V2)
(z1,22) = (f@n)(r1,72): V1®Ve — Vielh
(v1,v2) = &(z1)(v1) @ n(w2)(va)

We point out that the external tensor product of unitary representation is also unitary. More-
over, if £ € Hom(G,U(d;)) and n € Hom (G, U(d,;)) are matrix unitary representations, then

¢ ®n € Hom (G, U(ded,)) is also a matrix unitary representation and
f ® 77(*%17 1'2) = f(xl) & 77(;52) e Cdgdnxdgxdn7

where £ (1) ® n(x2) is the Kronecker product of these matrices.

It is enough to study continuous irreducible unitary representations of (G; and G to obtain
the elements of G, since for every [¢] € G, there exist [¢] € G and ] € G- such that ¢ ~ £@1,
that is, [¢] = [ ® 5] € G and dy = d¢ - d,,. Moreover, [&; @ 1] = [€, © 7] if and only if
[£1] = [&2] and [1m1] = [n2]. The proof of this fact can be found on [9] (Chapter II, Proposition
4.14). Therefore, the map [¢ ® 1] — ([¢], [1]) is a bijection from G to G1 x Go.

Itis easy to see that L = Lg, + Lg,, so we have v, = Vg + vpy. Therefore we have

1

S (&) + (m) < (E@n) < (&) + (), (A.1)

for all [¢] € G, and n] € Go.
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Let f € L'(G) and [¢] € G. Let [¢] € G and n] € G- such that [¢] = [ ® n)]. Notice that

-~

fE@mn)

lLf@M&®M@Ndx

= / f(x1, 2)(E(21) @ n(w2))" darda,
Gy JG1

- / f(ar,2)6(@1)* @ n(es)" dordes.
Gy JG1

Thus f(£ ® ) € Cl*dedn with elements

fewny = /G [ Her (@) @naa)); dods,

= / f($1,962)§($1)nm7)(x2)sr dxidzsy
Ga J Gy
where 1 <m,n <d 1 <r, s <d, are given by

m = L%J—i—l, r:i—L
n = Ljd;nlj—i—l, s = j—hl;ljdn.

Similarly for u € D'(G), we have

u(§ ®n)y; = <U7 € U)ji> = (U, Enm X Nsr ),
where (fnm X nsr)(l'l; -1'2) = f(xl)nmn(xQ)sw

Definition A.1. Let G and Gy be compact Lie groups and, set G = G| x Gy. Let f € L'(Q)
and & € Rep(G1). The x1—Fourier coefficient of f is defined by

~

f(f,l’g) = f(xlwrZ) f(:cl)* d'rl € (CdEngv T € G27
G1

with components

~

F(& m2)mn = . f(x1,22) E(T1)nm dzy, 1 <m,n <d;.

Similarly, for n € Rep(Gsy), we define the xo—Fourier coefficient of [ as

o~

flai,m) = | f(z1,22)n(22)* dzg € CH¥ 2y € Gy,
Ga

with components

~

f(x1777)7‘8 - f(xlaxQ) n(xQ)sT dﬂfl, 1 S r,s S dn-
G2
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By the definition, the function

FE Y : Gy — C

Ty +—— f(ga x2)mn

belongs to L!(G1) for all £ € Rep(G1), 1 < m,n < d¢. Similarly, the function

f(-,n)rs: G, — C

€1 L f(%ﬂ?)rs

belongs to L'(G5) for all ) € Rep(Ga), 1 < r,s < d,.

Let £ € Rep(G1) and ) € Rep(G). Since f(&, + )y € LY(G,) forall 1 < m,n < d¢, we
can take its Fourier coefficient:
FE M mn = [ F& o) mmn(w2)* day € Clxdn
Go

with components

-~

?(fan)mm-s = o J (& 22)mnn(22)sr dxa

[ w2 dordes
Go J Gy

-~

for 1 < r,s < d,. Similarly, since f(-,7n),s € L'(G;) forall 1 < r,s < d,, we can take its
Fourier coefficient:
L/f\(ga n)rs = ]/C\(xb n)rsg(l'l)* dxl S Cd&XdE
Gt
with components

?(gun)rsmn = / J?(xhn)rsg(xl)nm day

G1

/Gl /G F (1, 22)E@1 ) 1(@2)or dadry,

for1 <m,n < d;.

Notice that

~

FE ) mnes = FE M rame = FED M1

with
i=dy(m—1)+r, j=d,n—1)+s,

forall1 <m,n <d¢and 1 <17, s <d,.
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Definition A.2. Let G1 and Gy be compact Lie groups, and set G = G1 X Ga. Let u € D'(G),
€ € Rep(Gy) and 1 < m,n < d¢. The mn-component of the x1—Fourier coefficient of u is the

linear function defined by

w — <a(£7 : )mn7w> = <U,fn_m X w>G

In similar way, for 1 € Rep(Gs) and 1 < r,s < d,, we define the rs-component of the xo—

Fourier coefficient of u as

u(-,n)es: C®(G;) — C
@ — (U )rs @) = (U, 0 X Tar) o

By definition, @(, + )mn € D'(G2) and u( - ,n),s € D'(Gy) for all £ € Rep(Gy), n €
Rep(G3),1 <m,n <d¢and1 <r s <d,
Let £ € Rep(G4) and ) € Rep(Ga). Since U(&, - )pmn € D'(G2) forall 1 < m,n < dg, we

can take its Fourier coefficient:
U(E M)mn = (@(E, - Ymny ") € Clrxh
with components
U M, = (WE s T = (1 Eoms X Ty = (1 G X o)

forall 1 < r,s < d,. Now, since u( -,n),s € D'(Gy) forall 1 < r,s < d, we can take its

Fourier coefficient:
UE,M)rs o= (@[ -, 7)ys, E7) € Clexde

with components
WE N s = (A, 0)rss Emn) = (U, Eam X Tor e = (s Gam X Nor)
forall 1 < m,n < d. Notice that
UE D e, = WE N rom, = UE D 1)y,
with
i=dy(m—1)+r, j=d,n—1)+s,

forall1 <m,n <d¢and 1 <17, s <d,.
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Notice that

dedy d

HU§®77HHS Z|U§®77u _ZZ’ énmnrs

4,j=1 m,n=1r,s=1

eenf,  ws

for all [¢] € G and n] € G- whenever u € LY(G) oru € D'(G).
It follows from (A.1) and (A.2) the following adaption of Theorem 1.27 to characterize

smooth functions and distributions defined on a product of compact Lie groups:

Theorem A.3. Let G and G5 be compact Lie groups, and set G = G1 X Gy . The following

three statements are equivalent:
(i) f€C=(G);
(ii) For every N > 0, there exists C'y > 0 such that

1 F (& mllis < Cn((€) + )N, Vel € Gr, [n] € G

(iii) For every N > 0, there exists C'y > 0 such that

FE M| < OO+, VIEI€Gr, ] € Ga L Smon < de 1< 7,5 <,

Moreover, the following three statements are equivalent:
(iv) v e D'(G);
(v) There exist C, N > 0 such that

1G(E, Mlss < CUE) + ()Y, V[E] € G, ] € Ga;

(vi) There exist C, N > 0 such that

AUE M| < CUQ + @)Y, Vgl € G I € G 1< min < de, 1< 1,5 < d,

In the next results we will investigate when a sequence of partial Fourier coefficients can

define a smooth function or a distribution.

~

Theorem A.4. Let Gy and Gy be compact Lie groups, G = G1 X Gy, and let {f(-,n),s} be a

sequence of functions on (G1. Define

dy
f(wlaxZ = Z Z rsnsr .1'1)

meGz ™S
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Then f € C*™(G) if and only lff( - N)rs € C®(GY), forall [n] € Gy 1< r,s < d, and for

every 3 € Nj and { > 0 there exist Cgy > 0 such that
}aﬁﬂxhﬁ)rslﬁ Coel)™, Vo, €Gy, [N eG, 1<rs< dy.

Proof. (<= Itis sufficient to consider NV € N in Theorem A.3 to conclude that f € C*(G).
Recall that —v¢ is the eigenvalue of the Laplacian operator L, associated to the eigenfunctions

{&mn, 1 < m,n < dc}, and we have

E/G\lg(g)mn = <£G197£n_m> = <g>£G1£n_m> = _V[E]<gugn_m> = _V[ﬁ]/g\(é)mm

forall g € C(Gy), [¢] € C/J\l, and 1 < m,n < d¢. In particular, for N € N, we obtain

—

V[g | f(é- n)rsmn| Lgl .}‘\(57 n)TSmn

\/C; £g1f<x17n)rs£(xl)nm dml

< /G LY s, m)rel [€(20) ] ity

2
< ( [ 122 d:cl) ( [ el dm)

max |85f($1, 7)rs|

1
< —=
v de /3; nee

By Proposition 1.24, there exists C' > 0 such that (§) < C' for all non-trivial [{] € G1. Thus
for all £ = N we have

| F(E el < O (&) Ny ™ < Cn2V((6) + ()Y,

Therefore f € C*(G).
1
(= )LetEy := (I — Lg,)2. Since f € C*(G), forall 5 € N} and N € Ny we have

OPEY f € C*(G) and then, by the compactness of G, there exists Csy > 0 such that

0P EY f(21,29)| < Can, V(x1,12) € Gy X Go. (A.3)
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~

Fix n € Rep(Gs), 1 < r,s < d,. We already know that f( - ,7),; € C°°(G1). Moreover
|<77>Naﬁf(x1’77)7"8| = |aﬁEéVf(x1a M)rs|

= 3B/ Eévf(%,%)n(@)srdb
Go2

|aﬂEéVf($1, $2)||77($2)sr| dxy

Go2
1 1
8 N 2 2 2 2
< |0°Ey f (21, 22)]” das n(22)sr|” ds
Gz G2
(A<-3) 1 C
= \/Z BN -
Therefore,
|aﬂf($1: Mers| < CBN<77>_N7
for all z; € Gy, [n]EC/J\Q,lgr,sgdn. O

Theorem A.5. Let G and Gy be compact Lie groups, set G = G X G5, and let {u Ts}

be a sequence of distributions on GG1. Define

U—Zdz '77]7'37737“

n]EG r,s=1

Then u € D'(G) if and only if there exist K € N and C' > 0 such that

forall p € C*(G4) and ] € G, where pi () = > 10l e n)-

IBI<K

Proof. (<=) Take ¢ = &, €] € é\l, 1 <m,n <de. Let § € N}, |5] < K, with K as in
(A.4). Since the symbol of 9° at z; € G and € € Rep(G) is given by

09 (1,€) = £(21)"(97€) (1),

we have

dg

10 Gm (1) = D &ui ()95 (€)im

i=1

< Z |£m HUBB zm|

1/2

< | 2 feuila)? D 005 (§)iml”

1/2
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Let M € Z satisfying M > 4mC1 By (1.6) we have

1/2 J 1/2

de
D@l < Do laillieen | < Cu/dede)™
i=1 i=1

and, by Proposition 1.25, there exists C' > 0 such that
de < C()"

Moreover, notice that

de 1/2

S o0r (Ol | < Nloas(©)llis < VVelloon (©)llop < +/deCy (€)',

i=1
where the last inequalities come from (1.10) and (1.11). Hence
107 €um (21)] < CE™ V/dellogs (€)ns

< CE)Mdelloas (€)lop
< chg|<€>2M+IBI.

Then
Pic(Eam) = Pic(Eum) < C(E)MHE

Hence

= |< rs7€nm>| < CpK(gnm)< >K

< g™

| (&M rsn | =

< C((€) + (n))PEHHO.

Therefore u € D'(G).
(=) Since u € D'(G), then there exist C' > 0 and K € N such that

< C&) + ()",

| @(gﬁ T])Tsmn

for all [¢] Eé\l,[n] Gé\g, 1<r,s<d,and1 <m,n < d;and

3

= Z Z dﬁd Z Z é 77 T'Smné-nmnsr

[5}6G1 [nedG mn=1r,s=1

129
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For ¢ € C*°(G) we have

[@(-,m)rss )| = [(u, o X Tsr)|
de  dy

SN dedy ST AE Mkt Enme 0D, ek o)y

[€]€CG1 n)eCG m,n=1 k(=1

Notice that <77€k’%>02 = dinégsdkr, since the set B is orthonormal (see (1.1)). Moreover,

BE)mn = (Enm: ¥, - SO

|<a rsy Z d£ Z 5 n)rsmnsp(g)mn

[ﬂGGl m,n=1

de
< Z df Z ‘ﬁ(fan>rsmn

[5]66\1 m,n=1

<03 de YU+ ¥ @

eG  mn=l

|BE)mn]

where the last inequality comes from (A.5). Notice that for all K € N it holds ((¢) + (n))¥ <
2K ()% (). In addition, we have

de de
S 3Ol < [ 2 T 18l

m,n=1 m,n=1

de[|P(E) s

Since (¢) = (€) and the summation is over all G, we have

Z de (&) Z 1P(€ mn|— Z d Z |P(E)imn| = Z d5<£>K Z |P(E) mn-

[€)eGh m,n=1 [EleCh m,n=1 GEe m.n=1

Thus

de
(@ m)rss @) < O D ded©)™ D 1B(E)mnl

§]€G1 m,n=1
Z dg E*12(6) llus
[€]€Ga

The series 3 dZ (€)™ converges if and only if ¢ > 42CL which implies that there exists
[€leGa
C > 0 such that de < C(€)"™ ", for all [¢] € G;. Hence,
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@ mres )] = OO 30 (A=) (del) ™ (O s

5]601

N | —
|

<omt| Yo dame Y ™ I 15(6) |15

[€]eG1 [€]eCh

N |+—=

K 2(K+2dim G1) || ~
<o )] de(e)*" 1B 13
[€]€G1

Let L € Ny such that K +2dim G, < 2L. So

(@(, s )] < )™ | D ded€)™ 1B s

[€]€G1

= C<77>K Z d&HE ”HS

[€]€Ga
= C(n)"|Et |
n 1 PllL2(Gy)

L
< OB ol 2@ ()™,

1
where £y = (I — L,)?2, and the last equality comes from the Plancherel formula (1.3). Notice

that
1B ll2 i) < 1B ¢ll=(ay = (1 = La) @l < Cpar(9).
Therefore,
[@(, m)rss )| < Coar (@) (m)*".
O
Now we will present the characterization of ultradifferentiable functions and ultradistri-
butions in Komatsu classes of both Roumieu and Beurling types through the analysis of the

behavior of their partial Fourier series. First, as in the smooth case, we have the following

characterization of ultradifferentiable functions and ultradistributions:

Theorem A.6. Let G| and G5 be compact Lie groups, and set G = G| X Gy . The following

three statements are equivalent:

() f €Ty (G);
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(ii) There exist C, N > 0 such that
176 mlles < Cexp{—M(N(() + ()}, V] € G, [n] € Ga;

(iii) There exist C, N > 0 such that

-~
=

| (& mhn,.| < Coxp{=M(N(() + )},

forall [€] € G, n] € Gy, 1<m,n< de, 1 <r,s <d,
Moreover, the following three statements are equivalent:
(iv) u€ T4 (G);

(v) Forevery N > 0, there exists Cy > 0 such that
1G(&, M) lus < Cw exp{ M(N({€) + (n))}, VI¢] € G, [n] € G

(vi) Forevery N > 0, there exists C'y > 0 such that

‘ﬁ(f,ﬁ)mnm < Cnexp{M(N&) + (m))},

for all €] Eé\l, n € Gy, 1 <m,n <dg 1<rs<d,.

Theorem A.7. Let G and Gy be compact Lie groups, and set G = G x Gy . The following

three statements are equivalent:

() f € Tony(G);

(ii) For every N > 0, there exists C'y > 0 such that
| 7€ mllas < O exp{-M(N((€) + (m)))}, VI€] € Gy, [n] € G

(iii) For every N > 0, there exists C'y > 0 such that

| (&M | < O exp{=M(N((©) + )},

forall [¢] € é\l, n] € 6\’2, 1<m,n<de 1<rs<d,
Moreover, the following three statements are equivalent:

(iv) w € 'y (G);
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(v) There exist C;, N > 0 such that
|8 mlles < Cexp{M(N((&) + m))}, VI € G, [n] € Ga;
(vi) There exist C, N > 0 such that

‘ ﬁ(ﬁ? n)mnrs

< Cexp{M(N((&) + (m))},
forall [¢] € é\l, n] € @, I1<m,n<de 1<r s<d,

Theorem A.8. Let G| and G5 be compact Lie groups, set G = G1 x Ga, and let f € C*™(G).
Then f € I'(a, 1 (G) if and only zf]?( -, Mrs € U'iar 3 (Gh) for every [n] € Gy 1< r,s < d, and

there exist h, C, e > 0 such that

max |0~ f(xl N)rs| < ChI® | Moy exp{—M (e(n))}, (A.6)

z1€G

forall [n] € (/?\2, 1<r,s<d,anda € Ndr,

Proof. ( <= ) Let a € Ny. Recall that —v is the eigenvalue of the Laplacian operator L,

associated to the eigenfunctions {&,,,, 1 < m,n < d.}. By (1.7), we obtain

v F (&) =

£aG1 (5 n)rsmn

Egl .]/C\(‘rh 7]>rs§(x1)nm dxl

G1

< [ 18, Flarmlléer)on de
G1

/2
( . L&, (a:l n)rs|* dxl) (/ 1€(21) dl'l) )

Notice that, by (1.1), we have ||, || 12(c,) < 1, forall [¢] € G1. Moreover, we can write L3

as a sum of df derivatives of order 2a, where d; = dim (G;. So, by (A.6), we obtain

By Proposition 1.24, there exists C' > 0 such that (£ )2 < Cyyg, for all non-trivial representation.
By the property (M.2) of the sequence { M.}, we have M, < AH?**M?. Thus

| F(E M) e | < CVATRH)?(€) 2 M2 exp{—M(e(n))}, Va € No
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Hence,

= . M 2
F€mn <€ (il s ) esp{=M(ela)

— Coxpl—2M((VBRH) M (E))} exp{—M(=(n)))
< Cexp{—M((v/dihH) ™ (€))} exp{—M((n))}
Set 2N = min{(v/d,hH)™ !, e}. In this way, we get
| 7€M vl < Cexp{=M(2N())} exp{~M(2N (1))}

and by Proposition 1.34,

| T(€ ] < Cexp{—M(N((E) + ()},

134

for all [{] € G non-trivial, n] € Go. Itis easy to see that we can also obtain this inequality for

the trivial representation of G, from the hypothesis. Therefore f € I'{,}(G).

( = ) We can characterize the elements of I'{,;,}(G) as follows (Theorem 2.3 of [12]):

¢ € I'tar,3(G) if and only if there exist C, k. > 0 such that

max |08y (w1, x2)] < CAIPHPIAL, L),

(x1,22)€G
forall « € NJ*, 8 € N2
For f € I'(p,3(G) we have

[n]|a f(l’l, Mrs| = |aa£g2 f(@1,m)rs]

; |08 L, [ (21, 22)|[n(22) s | d

1/2 1/2
< ( / |af£é2f<x1,x2>|2dx2) ( rn<x2>sr|2dx2)
G2 G2

max ’afa;f(l'h Tg)|

- A / | | xl IQ GG
< C’dgh'aH 5M|a|+267
where dy = dim G,. Thus, when [7] is not trivial we obtain
|a?f(x17 77)7«3’ S Cd§h|a|+2BM\a|+25<n>_26
< CRIHF2B AH 28 0 W22 dS Mog () =7
< C(hH)"* Mo h* dy H* M2 ()~
< C(hH)" My exp{—2M ((\/dshH?) (1))}
< C(hH)™ Mgy exp{—M ((/dyh H?) " (n))}.
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Put b’ = hH and € = (v/dyh H?)™! to obtain

max \8?f(x1,77)m! < Ch/|a|M|a| exp{—M(e(n))},

r1€G1
for all non-trivial [n)] € Gy, 1< 7,5< d,, o € Nj.
For [n] = [1¢,] we have

~

|8f‘f(x1, 1G2)‘ =

ailf(iﬁl, 352) dxy
Ga2

< ’alaf<x17 xz)’
< Ch* M.

In this way, adjusting C' if necessary, we obtain

~

|81af(x17 ]102)| < Cth\al eXp{_M(5<]lG2>>}‘

]

In the next results, we will be concerned about estimates involving only non-trivial repre-

sentations since the trivial case is treated similarly as in the proof of Theorem A.8.

Theorem A.9. Let Gy and G5 be compact Lie groups, set G = G1 X Go, and let f € C*(QG).
Then f € ', (G) if and only lff( ,Mrs € Lar) (G1) for every ] € Gy 1<71,5< d, and

forall h > 0 and ¢ > 0 there exists Cy. > 0 such that

max |0% (21, 7)rs| < Chehl® Mg exp{—M (e(n))},

r1€G

forall [n] € Gy, 1<1,5< d, and o € N

Proof. ( <= ) By the proof of Theorem A.8, we have

| F (&) ramn| < Che exp{—M((\/drhH) ™))} exp{—M(e(n))}-

Given N > 0, choose h = ; and e = 2N. So
2/d\NH

| 7 (&) s | < Civ exp{—M(2N(€))} exp{—M(2N (n))}
< Cly exp{—M(N((€) + (m))}.

Therefore f € I'(y,)(G).
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( = ) We can characterize the elements of I'(;,,}(G) as follows (see [12]): ¢ € I'qar,3(G)

if and only if for all A > 0 there exists C';, > 0 such that

max (0705 (x1, )| < CRIHIM g g,
(z1,22)€G

forall « € NJ', 3 € Ni*. Let f € I'(5s,). In the proof of Theorem A.8 we have obtained

07 F (1, m)rs] < ChlhH)™ Mgy exp{—M((v/nhH?)™ (n))}
Given {,¢ > 0. If le < (\/nH)™!, take h = (H~!. In this case,
|afl]?($1, 77)rs| S Cﬁag‘alMW‘ eXp{—M((\/ﬁfH)_l@ﬁ)}
< Ceel™ My exp{—M((=(n))}
If te > (y/nH) ™!, take h = (y/neH?*)"'. So
107 F (1, m)ral < Cre(v/neHP) ™% Mo  exp{ =M ((e(n))}
< Cel™ Moy exp{ =M ((=(n))}
[

Theorem A.10. Let G| and Gy be compact Lie groups, and set G = G X G9. Then u €

Ff{Mk}(G) if and only if for all €, h > 0 there exists Cj,. > 0 such that

[(@C s )| < Chellollnexp{M(e(n))}, Vo € Tag (Gh),

where ||| := sup|0®p(zy) L1 M

laf *
,T1

Proof. (<= )Letyp = % ‘We have
105, (21)] < CCL ()PP,

where p is any natural number satisfying p > % (see [11]). Then

G 1)rss Eom)] < Coel| ol exp{M (= ()}
= G sup 0T )h 71 M| exp{ M (<))}

,T]

< Che(€)" sup [CF€) ™ 1M exp{ M ((n)) }

= O (&) exp{ M (h 1 Co(€))} exp{ M ((n))}
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By Proposition 1.35, we have
(€)7 exp{M (h™'Co(&))} < A(h™"Co) "M, exp{M(Hh"Cy(¢))}.
By Proposition 1.34, we obtain

(G )rss Eum)| < Che exp{M(H(HR™ Co(€) +(m))}-

Given N > 0, choose h = % and e = % In this way,

| @& M)mn,| < O exp{ M(N((€) + (m))},

which implies that u € I',, ,(G).

(=) Since u € F{M }(G), for every ¢ > 0, there exists C;, > 0 such that

|(u, >!<Cesup€'a‘+‘ﬁ'M 103050 | 1= ()

% \+|BI|

for all ¢ € i, (G). Given ¢ € I'iay,3(Gh), take i = ¢ X 7. Then

[(@(- s m)rs, @) = [(u, 0 X Tsr)|

< C Sug (e IJr‘B|j\4| 1+18] SUP |07 (1)) sup |82 nsr($2>’

Similar to what was done above, we have

By 51 | < Coexp{M(HCy(m))}.

By the property Mo M5 < Mo+ |5 We obtain

[@( - n)rer )] < Cosup |07 @ (1) M || exp{ M(H(Co(n))}.

a,x1

Given h,e > 0. If eh < CoH, take { = 7% 1 and

[(@(-m)rs, ) < Chell@lln exp{M(e(m))}-

On the other hand, if eh > CyH, take ¢ = h~'. Thus H¢C,, < ¢ and

[(@( s 0)] < Chelllln exp{M(e(m))}-
0

Theorem A.11. Let G and G5 be compact Lie groups, and set G = G1 X Gy . Then u €
U, (G) if and only if there exist €, h, C > 0 such that

[(@(- s, @) < Cllollnexp{M(e(n)}, Vi € Tany(Gh)-

The proof of this theorem is analogous to the Roumieu case and it will be omitted.
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B Auxiliary results
Lemma B.1. Ler A € C and consider the equation

d
%u(t) + Au(t) = f(t), (B.1)

where f € C*°(T").

If \ & iZ then the equation (B.1) has a unique solution that can be expressed by

1 2 Y
or equivalently,
1 2w "
u(t) = T /0 e f(t+r)dr. (B.3)

If\ € iZ and fozw e f(s) ds = 0 then we have that

u(t) = e M /t e f(s)ds (B.4)
0

is a solution of the equation (B.1).

Proof. Notice that the function u defined in (B.2), (B.3), and (B.4) is a smooth function on T*.

Let us prove now that v defined in (B.2) is a solution of (B.1). Notice that

—u(t) = (1 - 6_2”’\)_1/0 ' e —f(t — s)ds

= [(t) = du(t)

Analogously we prove that « defined on (4.4) is a solution of (B.1). Finally, using the expression

on (B.4) we obtain

d e s — Xt At _
Eu(t) = e /o e f(s)ds + e MM f(t) = —Au(t) + f(t).

Therefore, the functions defined on (B.2), (B.3), and (B.4) are solutions of (B.1).
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The expressions (B.2) and (B.3) are actually equivalents. Indeed, we have

1 2m
U(t) = m/{] G_Asf(t — S) ds (B2)

and make the substitution s — —r + 27. Hence, s = 0 implies that » = 27 and s = 27 implies

that » = 0. Moreover, ds = —dr. So

1 /271' N 1 0 o
—_— e Sf(t—s)ds:——/e(r ™ f(t+ 1 —2n)dr.
1 — 6—27r/\ 0 1 — 6—27r)\ o

Since f is 2w—periodic, we obtain

6—27r)\

1 0 27
R / AT F(t b — 27) dr = T o= / e f(t+r)dr.
—e —e 0

T

Now, we have
e—27r>\ 1

1 — 6—27r)\ 6271')\ -1 '

Therefore,

1 2

Let us prove now that the equation (B.1) has a unique solution when A ¢ iZ. Assume that
uy, uy € C*°(T?) are solutions of (B.1). For u = u; — uy we obtain

d
—ult) + du(t) = 0,

or equivalently,

d ¢ B
7 (eA u(t)) =0,

which implies that u(t) = ce™, for some ¢ € C. By the fact that u is 2r—periodic, we have
u(t) = u(t 4 21) = ce M) = e M2 — gy (t)e A2,

for all ¢ € [0,2n]. Since \ ¢ iZ, we have e=**™ = 1 and we conclude that u = 0, that is,
Uy = Us.

To conclude the proof let us see how to obtain the expressions (B.2), (B.3), and (B.4).

If \ € iZ we have that the function ¢t — e is well-defined on T and so we can write (B.1)

as

Hence,

u(t) = e /t e f(s)ds. (B.4)
0
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Since u must be 2r—periodic, we have u(27) = u(0) = 0, that is,

2
/ e f(s)ds =
0

Assume now that A ¢ iZ and notice that E € D'(T") defined by E = (1 — 6*2“)_1 e M is

a fundamental solution of the operator -+ A. Hence, a solution of (B.1) can be expressed as
21 1
) = (B D)0 = [ (1= e s
0

1 27
= 1_6—270\/ e M f(t — s)ds (B.2)
0

Lemma B.2. Are equivalent:
1. There exist C, M > 0 such that
|k + copr(n) — iq| > C(Ik] + (n)) ™,
forallk € Z,[n) € G 1<r< d,,, whenever k + cop.(n) — iq # 0.
2. There exist C, M > 0 such that

1 — e:l:27ri(00,ur( —iq)

> C(n) ™M (B.5)

forall[n) e G,1<r < d,,, whenever copi,(n) — iq ¢ Z.

Proof. Assume that 2. does not hold, so for all j € N there exist ;] € Gand1 < r; < dy,
such that
i i coper. (ni)—1 -
0 < |1—e*? (copr; (nj)—iq) <%<77j>]

Setting co = ag + iby, with ag, by € R, we have that [Re(q) — bopr,(n;)| — 0 and there exists
a sequence of integers {k;} such that |k; 4 aopu,, (n;) + Im(q)| — 0, when j — oo. Hence, by

the Mean Value Theorem we have

‘1 _ eiQﬂ'i(Co,urj (nj)fiq)

> ’1 _ ex2n(Re(@)—pur; (nj)bo) | >

e~ '27 [Re(q) — pun, (1 )bo]

and

|sin (27 (kj + i, (nj)a0 +Im(q)))| > 7 |k; + pr, (n;)ao + Im(q)|,
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for j sufficiently large. Thus,

7w@+uwmmm+hmwlsbm@w@a+mwnmm+mm»H
< 92 (Re(@)—pr, |sm (27 (kj + wr; (nj)a0 + Im(q))) |
=2 ’Im (1 — eﬁm(“’"j Wi)c@‘”))

<9 ‘1 _ ei%i(ﬂrj (ﬁj)CO*iq) )

We conclude that for j sufficiently large there exists C' > 0 such that

0 < |k; + pr, (mj)co — iq| < |Relq) — pur, (10;)bo] + |k + g, (n;)ao + Im(q)|
<C ‘1 _ eiQﬂ'i(Nrj (Uj)CO—iQ)
C

> 7<77j>_j7

which implies that 1. is not satisfied.

Conversely, assume now that 1. is not valid, so for all j € N there exist k; € Z, ;] € G

and1 <r; < dn]. such that

0 < [kj + pr, (15)co — iql < 5(|ks| + (n;))~

In particular, we have |k; + p,,(n;) — ig| — 0 and | Re (¢) — pr,(n;)| — 0 when j — oo. The
ideas to verify that 2. does not hold is similar to the previous case and so the details is omitted.

For 7 sufficiently large, by Mean Value Theorem we obtain a constant C' > 0 such that

1 — eE2mi(pr; (nj)co—ia)

< ‘1 _ 22 (Re(@)—pr; (1)b0) (.o (27r (Mr-(ﬂj)aO + Im(q)))’

L ‘ +27(Re(q)—par, (n)bo) - |sin (27 (pr, () a0 + Im(q)))]|

< |1— cos (27T (kj + pr; (15) a0 + Im(q )) ! + ’1 ¢t2m (Be(a) —r, (n7)b0)

+ =2 (Re@ =1 00) v (27 (K + i, (my) a0 + Tm(q)))]
< C (|k; + e, (15)a0 + Tm(q)| + |Re(g) — pr, (n;)bo])
< 2C|k; + pr, (1) c0 — i

22 (k] + ()~

S TC<7]]> ja

IN

and so Condition 2. is not satisfied. L]
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