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“It’s the questions we can’t answer that teach us

the most. They teach us how to think. If you give

a man an answer, all he gains is a little fact. But

give him a question and he’ll look for his own

answers.”

Patrick Rothfuss, The Wise Man’s Fear
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À CAPES – Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior, pelo apoio

financeiro.



Preface

This dissertation presents recent results of my research activities at the Graduate in Mathe-

matics Program (PPGM) at Federal University of Parana and at Imperial College London. My

work has been supported by Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior

(CAPES). Parts of the results are in the following articles submitted to scientific journals:

1. A. Kirilov, W. A. A. de Moraes, and M. Ruzhansky. Global hypoellipticity and global

solvability for vector fields on compact Lie groups. arXiv e-prints, arXiv:1910.00059

[math.AP], Sep 2019.

2. A. Kirilov, W. A. A. de Moraes, and M. Ruzhansky. Global properties of vector fields on

compact Lie groups in Komatsu classes. arXiv e-prints, arXiv:1910.01922 [math.AP],

Oct 2019.

3. A. Kirilov, W. A. A. de Moraes, and M. Ruzhansky. Global properties of vector fields on

compact Lie groups in Komatsu classes II: normal form. arXiv e-prints,

arXiv:1911.02486 [math.AP], Nov 2019.

4. A. Kirilov, W. A. A. de Moraes, and M. Ruzhansky. Partial Fourier series on compact

Lie groups. Bulletin des Sciences Mathématiques, 160:102853, 2020.



RESUMO

Esta tese apresenta condições necessárias e suficientes para a obtenção de

hipoeliticidade global e resolubilidade global para uma classe de campos vetori-

ais definidos em um produto de grupos de Lie compactos. Tanto a hipoeliticidade

global quanto a resolubilidade global são estudadas no sentido usual das funções

suaves, bem como em classes de Komatsu. Em vista da conjectura de Greenfield

e Wallach sobre a não existência de campos vetoriais globalmente hipoelı́ticos

senão definidos no toro, é estudada uma classe de exemplos que podem ser con-

siderados como perturbações de ordem zero de campos vetoriais.

Palavras-chave: grupos compactos, hipoeliticidade global, resolubilidade glo-

bal, classes de Komatsu.



ABSTRACT

In this dissertation we present necessary and sufficient conditions to have global

hypoellipticity and global solvability for a class of vector fields defined in a prod-

uct of compact Lie groups. Both global hypoellipticity and solvability are studied

in the usual smooth sense as in the sense of Komatsu. Considering the Green-

field’s and Wallach’s conjecture, about the non–existence of globally hypoelliptic

vector fields out of tori, we also study classes of examples that can be considered

as zeros-order perturbations of our vector fields.

Keywords: compact groups, global hypoellipticity, global solvability, Komatsu

classes.
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Introduction

In this work we propose to study regularity of solution and solvability of vector fields (and

their perturbations by zero order terms) on a compact Lie group G. More precisely, denoting

by D′(G) the space of distributions on G and by P : D′(G) → D′(G) a first-order differential

operator, we are interested in establishing conditions that ensure that u is smooth whenever Pu

is smooth. This property is known as global hypoellipticity. In relation to the global solvability,

we want to identified under what conditions it is possible to guarantee that the equation Pu =

f ∈ D′(G) has a solution, in the sense of distributions.

Both global hypoellipticity and global solvability have been widely studied in recent years,

especially in the n−dimensional torus Tn. See, for example, the impressive list of authors who

have published articles addressing these subjects: [6], [7], [10], [14], [24], [26], [27], [28], [30],

[31], [32] and references there in.

Even in the case of Tn, the investigation of these global properties for vector fields is a

challenging problem that still has open questions. Perhaps, the most famous and seemingly

far-off question of a solution is the Greenfield’s and Wallach’s conjecture, which states the

following: if a closed smooth orientable manifold admits a globally hypoelliptic vector field,

then this manifold is C∞−diffeomorphic to a torus and this vector field is C∞−conjugated to

a constant vector field whose coefficients satisfy a Diophantine condition (see [22] and [27]).

S. Greenfield and N. Wallach have proved this conjecture for compact Lie groups in [27]. The

conjecture it was also proved for compact manifolds of dimensions 2 and 3, and in some very

particular cases, which are described by G. Forni in [22] and by L. Flaminio, G. Forni, and F.

Rodriguez Hertz in [21].

Most of the studies that deal with the question of global hypoellipticity and global solvability

in the torus make use of Fourier analysis as the main tool to obtain results from conditions

imposed on the symbol or on the coefficients of the operator. For example, in [26], S. Greenfield

and N. Wallach use only the Fourier series in Tn to characterize the global hypoellipticity of a
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differential operator through its symbol and the famous application: L = ∂x + α∂y, α ∈ R is

globally hypoelliptic in T2 if, and only if, α is a irrational non-Liouville number appears for the

first time. Therefore a natural way of extending such studies to other smooth manifolds would

be to consider manifolds where we have a Fourier analysis.

In this direction, based on ideas [28] and [40], J. Delgado and M. Ruzhansky [18] introduced

in compact smooth manifold M a notion of Fourier series for operators that commute with a

fixed elliptic operator. Using these ideas, a study of global hypoellipticity for such operators

was made in [15], [16], and [17]. The obvious disadvantage of this technique is that it works

only for operators that commute with a fixed elliptic operator.

In the particular case where the compact manifold is a Lie group G, there is a natural way

of introducing a Fourier analysis into G, see for example [11], [12], [13], [20], [36], [37], [38],

[39], and [41]. In this work we use the notation and results based on the book by M. Ruzhansky

and V. Turunen [35] to study the global hypoellipticity and global solvability of vector fields on

Lie groups.

In the development of this project we find natural to begin by extending the results of [26]

and [30] to a product of Lie groups G1 × G2. In the case of constant coefficients, we observed

that the classic results of the torus could be easily recovered and that some interesting novelties

appeared. Next, by extending the theory of partial Fourier series to a product of Lie groups,

we recover the reduction in the normal form for operators of the form L = X1 + α(x1)X2,

where α ∈ C∞(G1) is a real-valued function and each Xj is a vector field on the Lie algebra

gj . Considering the Greenfield’s and Wallach’s conjecture, we also analyze the case L = X1 +

α(x1)X2 + q(x1, x2), where α ∈ C∞(G1) and q ∈ C∞(G1 ×G2).

After analyzing the solvability and hypoellipticity in the smooth sense, we decided to study

these same properties in the sense of Gevrey, which naturally led us to a generalization for the

Komatsu classes. In this way, we also study global solvability and global hypoellipticity in the

sense of Komatsu.

Outline of the dissertation:

This dissertation is organized as follows:

In Chapter 1 we introduce most of the notations and preliminary results concerning the

Fourier analysis on compact Lie groups. We also give a brief description of Komatsu classes of

Roumieu and Beurling types.

In Chapter 2 we study the global hypoellipticity and global solvability of a constant-co-
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efficient vector field defined in compact Lie groups. Moreover, motivated by the presented

examples and by Greenfield-Wallach conjecture, we give alternative ways to define global hy-

poellipticity to obtain examples in groups different from tori. We also investigate the properties

of the vector field with a perturbation by a zero-order term.

In Chapter 3 we study a class of vector fields with variable coefficients and give some condi-

tions that relate the global hypoellipticity and global solvability of these equations to constant-

coefficient operators.

In Chapter 4 we present a study of the global hypoellipticity of a vector field defined on

a product of a one-dimensional torus and a compact Lie group, which imaginary part of the

variable coefficient is not constant.

In Chapters 5 and 6 we extend the results of Chapters 2 and 3 to Komatsu classes.

In Appendix A we present precisely the partial Fourier series and in Appendix B we present

the proof of some auxiliary results.
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Chapter 1

Preliminaries

In this chapter we introduce most of the notations and preliminary results necessary for the

development of this dissertation. A presentation of these concepts and the demonstration of

all the results presented here can be found in the references [11], [12], [20] (chapters 1 and 2),

and [35] (chapters 7, 8 and 10).

1.1 Fourier analysis on compact Lie groups

1.1.1 Representations of topological groups

Let G be a topological group and let φ ∈ Hom(G,Aut(V )) be a representation of G in

a vector space V . We say that φ is unitary when Aut(V ) = U(V ) and matrix unitary when

Aut(V ) = U(n). The dimension of φ is denoted by

dφ = dimφ := dimV.

A subspace W ⊆ V is said to be φ-invariant if φ(x)W ⊆ W, for all x ∈ G. When W

is φ-invariant, we consider the restricted representation φ
∣∣
W
∈ Hom(G,Aut(W )) defined by

φ
∣∣
W

(x)w := φ(x)w. In particular, if φ is unitary then its restriction is also unitary.

Let {Vj}j∈J be a family of mutually orthogonal subspaces of an inner product space V and

write W =
⊕
j∈J

Vj . If φj ∈ Hom(G,Aut(Vj)) and Aj ∈ End(Vj) we define

φ =
⊕
j∈J

φj ∈ Hom(G,Aut(W )) by φ
∣∣
Vj

= φj, j ∈ J ; and

A =
⊕
j∈J

Aj ∈ End(W ) and Av := Ajv, j ∈ J and v ∈ Vj.
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Definition 1.1. Let H be a Hilbert space and φ ∈ Hom(G,U(H)) a unitary representation.

We say that φ is a strongly continuous representation if the map x ∈ G 7→ φ(x)v ∈ H is

continuous, for every v ∈ H.

A strongly continuous representation φ is called topologically irreducible if the only closed

φ-invariant subspaces are the trivial ones ({0} andH).

Definition 1.2. An intertwining operator between the representations φ ∈ Hom(G,Aut(V ))

and ψ ∈ Hom(G,Aut(W )), denoted A ∈ Hom(φ, ψ), is a linear mapping A : V → W such

that

Aφ(x) = ψ(x)A, ∀x ∈ G.

When the intertwining operator A is invertible, the representations φ and ψ are said to be

equivalent, and we denote this by φ ∼ ψ.

If φ ∈ Hom(G,Aut(V )) and ψ ∈ Hom(G,Aut(W )) are irreducible representations and

A ∈ Hom(φ, ψ), then it is possible to prove that either A = 0 or A is invertible. For equivalent

irreducible unitary representations, the operator A is an isometric isomorphism.

When φ ∈ Hom(G,Aut(V )) is an irreducible and finite-dimensional representation, by

Schur’s Lemma, we have Hom(φ, φ) = CI = {λI; λ ∈ C}. In particular, if G is commutative,

all irreducible finite-dimensional representations of G are one-dimensional.

1.1.2 The Peter-Weyl decomposition

We say that G is a compact group if G is compact as a topological space. In this case, there

exists an unique measure µG, called Haar measure of G, that satisfies the following properties:

(i)
∫
G
1 dx = µG(G) = 1;

(ii)
∫
G
f(x) dx =

∫
G
f(yx) dx, for all y ∈ G,

where we write ∫
G

f(x)dx :=

∫
G

fdµG.

From these properties we obtain

(iii)
∫
G
f(x)dx =

∫
G
f(xy) dx, for all y ∈ G;

(iv)
∫
G
f(x)dx =

∫
G
f(x−1) dx.
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We define the classical spaces Lp(G) as being the set of all complex-valued functions for

which the p-th power of their absolute value is integrable with respect to Haar measure µG.

The Haar measure of a product of compact groups is the product of the Haar measures of

each one of the compact groups and we may write∫
G×H

f dµG×H =

∫
G

∫
H

f(x, y) dxdy.

When G is compact, strongly continuous unitary representations can be written as direct

sum of finite-dimensional irreducible unitary representations. In particular, strongly continuous

irreducible unitary representations of compact groups are finite-dimensional.

We will denote by Rep(G) the set of all continuous irreducible unitary representation of G.

Definition 1.3. The unitary dual Ĝ of a locally compact group G is the set consisting of all

equivalence classes of strongly continuous irreducible unitary representations of G.

When G is compact, we have

Ĝ = {[φ];φ is a continuous irreducible unitary representation of G} .

For each equivalence class ξ ∈ Ĝ, there exists a unitary matrix representation φ ∈ ξ = [φ],

that is, there is a homomorphism φ = (φij)
m
i,j=1 : G −→ U(m), where the functions φij :

G −→ C are continuous.

Let φ = (φij)
m
i,j=1 and ψ = (ψij)

m
i,j=1 be irreducible matrix unitary representations such that

φ ∼ ψ, then there exists a unitary matrix A ∈ Cm×m such that

φ(x)A = Aψ(x), ∀x ∈ G.

Lemma 1.4. Let G be a compact group. Let φ and ψ continuous irreducible matrix unitary

representations. Then

〈φij, ψk`〉L2(G) =

 0, if φ 6∼ ψ,

1
dφ
δikδj`, if φ = ψ.

(1.1)

Let G be a compact group. We define its left and right regular representations πL,πR :

G −→ U(L2(G)) by

(πL(y) f)(x) := f(y−1x),

(πR(y) f)(x) := f(xy),

for almost every x ∈ G, with respect to µG.



Preliminaries 17

Theorem 1.5 (Peter-Weyl). Let G be a compact group. Then

B :=
{√

dimφφij ; φ = (φij)
dφ
i,j=1, [φ] ∈ Ĝ

}
,

is an orthonormal basis for L2(G), where we pick only one matrix unitary representation in

each class of equivalence.

Moreover, let φ = (φij)
dφ
i,j=1, [φ] ∈ Ĝ, then

Hφ
i,· := span{φij; 1 ≤ j ≤ dφ} ⊆ L2(G)

is πR-invariant and

φ ∼ πR
∣∣
Hφi,·

,

L2(G) =
⊕
[φ]∈Ĝ

dφ⊕
i=1

Hφ
i,·,

πR ∼
⊕
[φ]∈Ĝ

dφ⊕
i=1

φ.

Fourier series on compact Lie groups

Definition 1.6. Let G be a compact group, f ∈ L1(G), and φ = (φij)
dφ
i,j=1, [φ] ∈ Ĝ. The

φ-Fourier coefficient of f is

f̂(φ) :=

∫
G

f(x)φ(x)∗ dx ∈ Cdφ×dφ ,

more precisely,

f̂(φ)ij =

∫
G

f(x)φ(x)ji dx = 〈f, φji〉L2(G).

Observe that when φ = (φij)
m
i,j=1 and ψ = (ψij)

m
i,j=1 are irreducible matrix unitary equiva-

lent representations, there exists a unitary matrix U ∈ Cm×m such that

ψ(x) = U∗φ(x)U, ∀x ∈ G. (1.2)

So,

f̂(ψ) =

∫
G

f(x)ψ(x)∗ dx =

∫
G

f(x)(U∗φ(x)U)∗ dx =

∫
G

f(x)U∗φ(x)U dx = U∗f̂(φ)U,

that is, f̂(φ) and f̂(ψ) are similar matrices.



Preliminaries 18

By the Peter-Weyl Theorem, a Fourier series presentation of f ∈ L2(G) is given by

f(x) =
∑

[φ]∈Ĝ

dimφ

dφ∑
i,j=1

〈f, φij〉L2(G)φ(x)ij

=
∑

[φ]∈Ĝ

dimφ

dφ∑
i,j=1

f̂(φ)jiφ(x)ij

=
∑

[φ]∈Ĝ

dimφ Tr
(
f̂(φ) φ(x)

)
,

converging for almost every x ∈ G, with respect to µG, as well in L2(G), and the Plancherel

identity takes the form

‖f‖2
L2(G) =

∑
[φ]∈Ĝ

dimφ Tr
(
f̂(φ) f̂(φ)∗

)
=
∑

[φ]∈Ĝ

dimφ ‖f̂(φ)‖2
HS, (1.3)

where ‖A‖HS :=
√

Tr(A∗A).

We point out that by (1.2) and properties of the trace of matrices, the equalities above are

independent of the representative of the equivalence class.

1.1.3 Linear Lie groups and Lie algebras

A Lie group is a set endowed with compatible structures of group and C∞-manifold, that

is, the group operation and the inversion are C∞-functions. A linear Lie group is a Lie group

which is a closed subgroup of GL(d,C).

We will concentrate our study on linear Lie groups because the following characterization

of compact Lie groups that can be found in [9] (Chapter III, Theorem 4.1):

Proposition 1.7. Let G be a compact Lie group. Then there is some m ∈ N such that G is

isomorphic to a subgroup of U(m).

Throughout this work we set dimG = d.

The fundamental tool for studying linear Lie groups is the matrix exponential map. We will

endow Cd×d ∼= L(Cd) with the operator norm

Y 7→ ‖Y ‖L(Cd) := sup
‖x‖Cd≤1

‖Y x‖Cd .

Definition 1.8. Let X ∈ Cd×d. The exponential exp(X) ∈ Cd×d is defined by the power series

exp(X) :=
∞∑
k=0

1

k!
Xk,

where X0 := I .
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Notice that this series converges in the Banach space Cd×d because

∞∑
k=0

1

k!
‖Xk‖L(Cd) ≤

∞∑
k=0

1

k!
‖X‖kL(Cd) = e‖X‖L(Cd) <∞.

Let X, Y ∈ Cd×d and P ∈ GL(n,C). Then

(i) If XY = Y X then

exp(X + Y ) = exp(X) exp(Y ).

In particular, exp : Cd×d −→ GL(n,C) satisfies exp(−X) = exp(X)−1;

(ii) exp(XT ) = exp(X)T ;

(iii) exp(X∗) = exp(X)∗;

(iv) exp(PXP−1) = P exp(X)P−1.

We have

HOM(R,GL(n,C)) = {t 7→ exp(tX); X ∈ Cd×d},

where HOM(R,GL(n,C)) denotes the set of all continuous homomorphism from R to the

group GL(n,C).

Let A ∈ Cd×d be a matrix such that ‖I − A‖L(Cd) < 1. The logarithm

log(A) := −
∞∑
k=1

1

k
(I − A)k

is well defined and exp(log(A)) = A. Moreover, there exists r > 0 such that

‖X‖L(Cd) < r =⇒ log(exp(X)) = X.

Definition 1.9. A K–Lie algebra is a K-vector space V endowed with a bilinear mapping [·, ·]

satisfying

1. [a, a] = 0, ∀a ∈ V ;

2. Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, ∀a, b, c ∈ V .

A vector subspace W ⊆ V of a Lie algebra V is called a Lie subalgebra if [a, b] ∈ W , for

all a, b ∈ W .

A linear mapping A : V1 −→ V2 between Lie algebras V1, V2 is called a Lie algebra homo-

morphism if [Aa,Ab]V2 = A[a, b]V2 , for all a, b ∈ V1.
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Let G be a closed subgroup of GL(n,C). The R-vector space

Lie(G) = g := {X ∈ Cd×d; exp(tX) ∈ G, ∀t ∈ R}.

is a Lie subalgebra of the R–Lie algebra LieR(Cd×d) ∼= gl(Cd), with respect to the operation

[X, Y ] = XY − Y X, for all X, Y ∈ Cd×d.

Definition 1.10. LetG be a linear Lie group and g = Lie(G). The dimension ofG is dim(G) :=

dim(g) = k, hence g ∼= Rk as a vector space.

The mappingX ∈ g 7→ exp(X) ∈ G is a diffeomorphism in a small neighborhood of 0 ∈ g.

Moreover, if G is compact and connected then exp(g) = G.

The Lie algebra g can be identified with the tangent space of G at the identity I ∈ G. Using

left-translations, g can be identified with the set of left-invariant vector fields on G, and vector

fields have a natural interpretation as first-order partial differential operators on G.

Definition 1.11. For x ∈ G, X ∈ g and f ∈ C∞(G), define

LXf(x) :=
d

dt
f(x exp(tX))

∣∣∣∣
t=0

.

Notice that the operator LX is left-invariant. Indeed,

πL(y)LXf(x) = LXf(y−1x)

=
d

dt
f(y−1x exp(tX))

∣∣∣∣
t=0

=
d

dt
πL(y)f(x exp(tX))

∣∣∣∣
y=0

= LXπL(y)f(x),

for all x, y ∈ G.

Where there is no possibility of ambiguous meaning, we will write onlyXf instead of LXf .

Definition 1.12. Let G,H be linear Lie groups with respective Lie algebras g, h. The differen-

tial homomorphism of ψ ∈ HOM(G,H) is the mapping ψ′ = Lie(ψ) : g→ h defined by

ψ′(X) :=
d

dt
ψ(exp(tX))

∣∣∣∣
t=0

and satisfies

ψ(exp(tX)) = exp(tψ′(X)),
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that is, the following diagram commutes

G
ψ // H

g

exp

OO

ψ′
// h

exp

OO

Moreover, ψ′ is a Lie algebra homomorphism.

The adjoint representation of a linear Lie group G is the mapping Ad ∈ HOM(G,Aut(g))

defined by

Ad(A)X := AXA−1,

where A ∈ G and G ∈ g.

The adjoint representation of the Lie algebra g of a linear Lie group G is the differential

representation

ad = Ad′ : g→ Lie(Aut(g)) ∼= gl(g),

that is, ad(X) := Ad′(X), so that

ad(X)Y = Ad′(X)Y = [X, Y ].

Next we construct a natural associative algebra U(g) generated by g modulo an ideal, en-

abling embedding g into U(g). Recall that g can be interpreted as the vector space of first-order

left-translation invariant partial differential operators on G. Consequently, U(g) can be inter-

preted as the vector space of finite-order left-translation invariant partial differential operators

on G.

Definition 1.13. Let g be a K-Lie algebra. Let

T :=
∞⊕
m=0

⊗mg

be the tensor product algebra of g, where ⊗mg denotes the m-fold tensor product g⊗ · · · ⊗ g;

that is, T is the linear span of the elements of the form

λ001 +
M∑
m=1

Km∑
k=1

λmkXmk1 ⊗ · · · ⊗Xmkm,

where 1 is the formal unit element of T , λmk ∈ K, Xmkj ∈ g and M,Km ∈ Z+; the product of

T is begotten by the tensor product, that is,

(X1 ⊗ · · · ⊗Xp)(Y1 ⊗ · · ·Yq) := X1 ⊗ · · · ⊗Xp ⊗ Y1 ⊗ · · ·Yq
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is extended to a unique bilinear mapping T × T → T . Let J be the (two-sided) ideal in T

spanned by the set

O := {X ⊗ Y − Y ⊗X − [X, Y ] : X, Y ∈ g}.

The quotient algebra

U(g) := T /J

is called the universal enveloping algebra of g.

Definition 1.14. The Killing form of the Lie algebra g is the bilinear mapping B : g× g→ K,

defined by

B(X, Y ) := Tr(ad(X)ad(Y )).

A (R or C)-Lie algebra g is called semisimple if its Killing form is non-degenerate, that is, if

∀X ∈ g\{0} ∃Y ∈ g; B(X, Y ) 6= 0;

equivalently, B is non-degenerate if the matrix (B(Xi, Xj))
d
i,j=1 is invertible, where {Xj}dj=1 ⊂

g is a vector space basis.

A connected linear Lie group is called semisimple if its Lie algebra is semisimple.

The Killing form of the Lie algebra of a compact linear Lie group G is negative semi-

definite, i.e., B(X,X) ≤ 0, for all X ∈ g. On the other hand, if the Killing form of a Lie

group is negative definite, i.e., B(X,X) < 0 whenever X 6= 0, then the group is compact

and semisimple. We point out that there are compact groups which their Killing form is not

negative definite. For instance, the Killing form of the torus is identically zero, because of its

commutativity.

Let g be a semisimple K-Lie algebra with a vector space basis {Xj}dj=1 ⊂ g. Let B be the

Killing form of g, and define the matrix R ∈ Kd×d by Rij := B(Xi, Xj). Let

X i :=
d∑
j=1

(R−1)ijXj,

so that {X i}di=1 is another vector space basis for g. Then the Casimir element Ω ∈ U(g) of g is

defined by

Ω :=
d∑
i=1

XiX
i.
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Theorem 1.15. The Casimir element of a finite-dimensional semisimple K-Lie algebra g is

independent of the choice of the vector space basis {Xj}dj=1 ⊂ g. Moreover,

DΩ = ΩD,

for all D ∈ U(g).

In the case where g is semisimple, we can choose a convenient basis {Xj}dj=1 such that

B(Xi, Xj) = −δij . In this case, R = −I and the Casimir element is written as

Ω = −
d∑
i=1

X2
i .

The Casimir element of a linear semisimple Lie group is also denoted by

LG := Ω ∈ U(G), (1.4)

and viewed as a second-order partial differential operator on G is also called the Laplace oper-

ator on G. The Laplace operator LG is a negative definite bi-invariant operator on G. If G is

equipped with the unique (up to a constant) bi-invariant Riemannian metric, LG is its Laplace-

Beltrami operator.

Remark 1.16. In the case where g is not semisimple we can construct the Laplace-Beltrami

operator as follows. By Theorem 3.6.2 of [19], g can be written as

g = g′ ⊕ z,

where g′ is a Lie subalgebra of g on which the Killing form is negative definite, and z is the

kernel of the Killing form. Let 〈·, ·〉g′ be the inner product induced by the Killing form and

let {Y1, . . . , Yd} be a orthonormal basis of g′. For z, choose any inner product Ad–invariant

and consider {Z1, . . . Zm} an orthonormal basis of z. Observe that the sum of these inner

products is an inner product Ad–invariant on g, denoted by 〈·, ·〉g, and we have that B =

{Y1, . . . , Yd, Z1, . . . , Zm} is an orthonormal basis of g. One can shows that

LG = −
d∑
i=1

Y 2
i −

m∑
j=1

Z2
j ,

is the Laplacian-Beltrami operator on G for the metric induced by 〈·, ·〉g (see [34]). Notice that

LG = Ω−
m∑
j=1

Z2
j ,

where Ω is the Casimir element of g, which implies that LG commutes with any element of g.
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Let φ = (φij)
dφ
i,j=1 ∈ Ĝ, [φ] ∈ Ĝ and define

Hφ = span{φij; 1 ≤ i, j ≤ dφ}.

Theorem 1.17. For every [φ] ∈ Ĝ, the spaceHφ is an eigenspace of LG and

−LGφij = ν[φ]φij, 1 ≤ i, j ≤ dφ,

for some ν[φ] ≥ 0.

Notice that ν[φ] is independent of the choice of the representative of [φ], that is, if ψ =

(ψk`)
dφ
k` ∈ [φ], then

−LGψk` = ν[φ]ψk`, 1 ≤ k, ` ≤ dφ.

1.1.4 Function spaces

Let G be a compact Lie group of dimension d and {Xi}di=1 a basis of its Lie algebra. For

a multi-index α = (α1, α2, . . . , αd) ∈ Nd
0, we define the left-invariant differential operator of

order |α|

∂α := Y1 · · ·Y|α|,

with Yj ∈ {Xi}di=1, 1 ≤ j ≤ |α| and
∑

j:Yj=Xk

1 = αk for every 1 ≤ k ≤ d. It means that

∂α is a composition of left-invariant derivatives with respect to vector X1, . . . , Xd such that

each Xk enters ∂α exactly αk times. We do not specify in the notation ∂α the order of vectors

X1, . . . , Xd, but this will not be relevant in the arguments that we will use in this work.

Proposition 1.18. Let G be a compact Lie group of dimension d. The following statements are

equivalent:

(i) f ∈ Ck(G);

(ii) ∂αf ∈ C(G) for all |α| ≤ k;

(iii) Lf ∈ C(G) for all L ∈ U(g) of degree less or equal k.

Proposition 1.19. Let G be a compact Lie group of dimension d. The following statements are

equivalent:

(i) f ∈ C∞(G);
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(ii) ∂αf ∈ C(G) for all α ∈ Nd
0;

(iii) (−LG)kf ∈ C(G) for all k ∈ N0;

(iv) Lf ∈ C(G) for all L ∈ U(g).

We equipped C∞(G) with the usual Fréchet space topology defined by seminorms pα(f) =

max
x∈G
|∂αf(x)|. Thus, the convergence on C∞(G) is just the uniform convergence of functions

and all their derivatives: fk → f in C∞(G) if ∂αfk(x) → ∂αf(x), for all x ∈ G, due to the

compactness of G.

For all φ ∈ Rep(G), we have Hφ ⊂ C∞(G). It follows from Theorem 1.17 that φij ∈

C∞(G), for all 1 ≤ i, j ≤ dφ.

Definition 1.20. We define the space of distributionsD′(G) as the space of all continuous linear

functionals on C∞(G), in which we consider the notion of usual convergence: for uj, u ∈

D′(G), we write uj → u in D′(G) as j → ∞ if uj(ϕ) → u(ϕ) in C as j → ∞, for all

ϕ ∈ C∞(G).

For u ∈ D′(G) and ϕ ∈ C∞(G), we write

〈u, ϕ〉G := u(ϕ).

If u ∈ Lp(G), 1 ≤ p ≤ ∞, we can identify u with a distribution in D′(G) (which continues to

be denoted by u) in a canonical way by

〈u, ϕ〉G :=

∫
G

u(x)ϕ(x) dx.

In particular, if uj → u in Lp(G), then uj → u in D′(G).

For Y ∈ g, we can differentiate u ∈ D′(G) with respect to the vector field Y :

〈Y u, ϕ〉G := −〈u, Y ϕ〉G,

for all ϕ ∈ C∞(G). Similarly, for α ∈ N0, we define

〈∂αu, ϕ〉G := (−1)|α|〈u, ∂αϕ〉G,

for all ϕ ∈ C∞(G).

Definition 1.21. The spaceM(Ĝ) consists of all mappings

F : Ĝ→
⋃

[φ]∈Ĝ

L(Hφ) ⊂
∞⋃
m=1

Cm×m
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satisfying F ([φ]) ∈ L(Hφ), for every φ ∈ Ĝ. With respect to the matrix representations, we

have F ([φ]) ∈ Cdφ×dφ .

The space L2(Ĝ) consists of all mappings F ∈M(Ĝ) such that

‖F‖2
L2(Ĝ)

:=
∑

[φ]∈Ĝ

dim(φ)‖F ([φ])‖2
HS <∞,

where

‖F ([φ])‖HS =
√

Tr(F ([φ])F ([φ])∗).

The space L2(Ĝ) is a Hilbert space with the inner product

〈E,F 〉L2(Ĝ) :=
∑

[φ]∈Ĝ

dim(φ)Tr(E([φ])F ([φ])∗).

From now on, for every [φ] ∈ Ĝ, we choose a representative matrix φ = (φij)
dφ
i,j=1. Notice

that for any f ∈ L2(G), we can define

f̂ : Ĝ →
∞⋃
m=1

Cm×m

[φ] 7→ f̂(φ),

and by the Plancherel formula on Proposition 1.3, we have f̂ ∈ L2(Ĝ). We have the Parseval’s

identity

〈f, g〉L2(G) =
∑

[φ]∈Ĝ

dim(φ) Tr
(
f̂(φ)ĝ(φ)∗

)
=
〈
f̂ , ĝ
〉
L2(Ĝ)

.

Theorem 1.22. Let G be a compact Lie group. The Fourier transform f 7→ FGf = f̂ defines a

surjective isometry L2(G)→ L2(Ĝ). The inverse Fourier transform is given by

(F−1
G H)(x) =

∑
[φ]∈Ĝ

dim(φ) Tr (H([φ])φ(x))

=
∑

[φ]∈Ĝ

dim(φ)

dφ∑
m,n=1

H([φ])mnφ(x)nm

and we have

F−1
G ◦ FG = IdL2(G) and FG ◦ F−1

G = IdL2(Ĝ).

Definition 1.23. Let G be a compact Lie group, u ∈ D′(G) and φ = (φij)
dφ
i,j=1, [φ] ∈ Ĝ. The

φ-Fourier coefficient of u is

û(φ) := 〈u, φ∗〉G ∈ Cdφ×dφ ,

that is,

û(φ)ij =
〈
u, φji

〉
G
.
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Notice that this definition agrees with Definition 1.6 when the distribution comes from an

L1(G) function.

For u ∈ D′(G), we have

u =
∑

[φ]∈Ĝ

dim(φ)Tr(û(φ)φ) =
∑

[φ]∈Ĝ

dim(φ)

dφ∑
i,j=1

û(φ)ijφji,

where the convergence is in the distribution sense.

Let LG be the Laplace-Beltrami operator of G. For each [φ] ∈ Ĝ, its matrix elements are

eigenfunctions of LG correspondent to the same eigenvalue that we will denote by−ν[φ], where

ν[φ] ≥ 0. Thus

−LGφij(x) = ν[φ]φij(x), for all 1 ≤ i, j ≤ dφ, (1.5)

and we will denote by

〈φ〉 :=
(
1 + ν[φ]

)1/2

the eigenvalues of (I − LG)1/2.

Proposition 1.24. Let G be a compact Lie group. There exists C > 0 such that

ν[φ] ≤ 〈φ〉2 ≤ Cν[φ],

for all non-trivial [φ] ∈ Ĝ.

Proposition 1.25. There exists a constant C > 0 such that the inequality

dim(φ) ≤ C〈φ〉
dimG

2

holds for all φ ∈ Rep(G). Moreover, for every integer M ≥ dimG
2

there exists CM > 0 such

that

‖φij‖L∞(G) ≤ CM〈φ〉M , (1.6)

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ

Proposition 1.26. Let G be a compact Lie group. Then∑
[φ]∈Ĝ

d2
φ〈φ〉

−2t <∞ ⇐⇒ t >
n

2
.

Theorem 1.27. Let G be a compact Lie group. The following statements are equivalent:

(i) f ∈ C∞(G);
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(ii) for each N > 0, there exists CN > 0 such that

‖f̂(φ)‖HS ≤ CN〈φ〉−N ,

for all [φ] ∈ Ĝ;

(iii) for each N > 0, there exists CN > 0 such that

|f̂(φ)ij| ≤ CN〈φ〉−N ,

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

Theorem 1.28. Let G be a compact Lie group. The following statements are equivalent:

(i) u ∈ D′(G);

(ii) there exist C, N > 0 such that

‖û(φ)‖HS ≤ C〈φ〉N ,

for all [φ] ∈ Ĝ;

(iii) there exist C, N > 0 such that

|û(φ)ij| ≤ C〈φ〉N ,

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

Definition 1.29. Let G be a compact Lie group and A : C∞(G) → C∞(G) be a continuous

linear operator. We define the symbol of the operator A in x ∈ G and φ ∈ Rep(G), φ =

(φij)
dφ
i,j=1 as

σA(x, φ) := φ(x)∗(Aφ)(x) ∈ Cdφ×dφ ,

where (Aφ)(x)ij := (Aφij)(x), for all 1 ≤ i, j ≤ dφ.

For instance, if we take A = −LG, we get

σLG(x, φ) = φ(x)∗(−LGφ)(x) = φ(x)∗(ν[φ]φ)(x) = ν[φ]Iddφ .

Theorem 1.30. Let σA be the symbol of a continuous linear operator A : C∞(G) → C∞(G).

Then

Af(x) =
∑

[φ]∈Ĝ

dim(φ)Tr
(
φ(x)∗σA(x, φ)f̂(φ)

)
for every f ∈ C∞(G) and x ∈ G.
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Notice that the formula above is independent of the choice of the representative. Indeed, if

φ ∼ ψ are matrix representations, there exists a unitary matrix U such that φ(x) = U∗ψ(x)U

for all x ∈ G. By Remark 1.2 we have f̂(φ) = U∗ψ(x)U and by the formula of the symbol of

the operator A,

σA(x, φ) = φ(x)∗(Aφ)(x) = (U∗ψ(x)∗U)(U∗AψU)(x)) = U∗σA(x, ψ)U.

Thus Tr
(
φ(x)∗σA(x, φ)f̂(φ)

)
= Tr

(
ψ(x)∗σA(x, ψ)f̂(ψ)

)
, for all x ∈ G.

WhenA : C∞(G)→ C∞(G) is a continuous linear left-invariant operator, that isAπL(y) =

πL(y)A, for all y ∈ G, we have that σA is independent of x ∈ G and

Âf(φ) = σA(φ)f̂(φ),

for all f ∈ C∞(G) and [φ] ∈ Ĝ. By duality, this remains true for all f ∈ D′(G). For instance,

by relation (1.5), we obtain

L̂Gf(φ) = −ν[φ]f̂(φ), (1.7)

for all f ∈ D′(G) and [φ] ∈ Ĝ.

Proposition 1.31. Let A,B : C∞(G) → C∞(G) be continuous linear operators and λ ∈ C.

Then for all x ∈ G and [φ] ∈ Ĝ holds:

1. σA+B(x, φ) = σA(x, φ) + σB(x, φ);

2. σλA(x, φ) = λσA(x, φ);

3. If B is a left-invariant operator, then σAB(x, φ) = σA(x, φ)σB(φ).

Let Y ∈ g. Notice that iY is a left-invariant operator and

〈iY f, g〉L2(G) =

∫
G

(iY f)(x)g(x) dx

= i

∫
G

d

dt
f(x exp (tY ))

∣∣∣∣
t=0

g(x) dx

= i
d

dt

∫
G

f(x)g(x exp (−tY )) dx

∣∣∣∣
t=0

= i

∫
G

f(x)(−Y g)(x) dx

= 〈f, iY g〉L2(G),

that is, the operator iY is symmetric on L2(G). Hence, for all [φ] ∈ Ĝ we can choose a

representative φ such that σiY (φ) is a diagonal matrix, with entries λm(φ) ∈ R, 1 ≤ m ≤
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dφ, which follows because symmetric matrices can be diagonalized by unitary matrices. By

Proposition 1.31,

σY (φ)mn = iλm(φ)δmn, λm ∈ R. (1.8)

Notice that {λm(φ)}dφm=1 are the eigenvalues of σiY (φ) and then are independent of the choice

of the representative, since the symbol of equivalent representations are similar matrices. We

can consider B = {Y1, · · · , Yn} an orthonormal basis of g with

Y1 =
Y

||Y ||
,

where the inner product is took as in Remark 1.16. By the properties of Laplacian operator, we

have that [LG−Y 2
1 , Y

2
1 ] = 0, so we can diagonalize simultaneously σ−Y 2

1
(φ) and σ−(LG−Y 2

1 )(φ),

for all [φ] ∈ Ĝ. Notice that

λ[φ]Iddφ = σ−LG = σ−(LG−Y 2
1 )(φ) + σ−Y 2

1
(φ),

where λ[φ] ≥ 0. Since these two operators are positives and Y1 is left-invariant, we obtain that

λ[φ] ≥ −(σY1(φ)mm)2,

for all 1 ≤ m ≤ dφ. By (1.8), we have

1 + λ[φ] ≥ λ[φ] ≥
λm(φ)2

||Y ||2
.

Thus,

|λm(φ)| ≤ ||Y ||〈φ〉, (1.9)

for all 1 ≤ m ≤ dφ. In order to simplify the notation, throughout the text we will assume that

the vector fields are normalized.

Proposition 1.32. Let G be a compact group, [φ] ∈ Ĝ and {Y1, · · · , Yd} be a basis for g. There

exists C0 > 0 such that

‖σ∂α(φ)‖op ≤ C
|α|
0 〈φ〉

|α|, ∀α ∈ Nd
0. (1.10)

From Chapter 2 of [23], we have

‖σ∂α(φ)‖op ≤ ‖σ∂α(φ)‖HS ≤
√
dφ‖σ∂α(φ)‖op. (1.11)
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1.2 Komatsu classes

In the previous section we have characterized smooth functions on G. The next natural

class of functions to study is the class of analytic functions on G, i.e., the class Cω(G) of

smooth functions φ that satisfies the following property: for every h > 0, there exists Ch > 0

such that

‖∂αφ‖L∞ ≤ Ch|α||α|!, α ∈ Nn
0 .

Since Cω(G) ( C∞(G), many authors consider intermediary classes of functions between

Cω(G) and C∞(G) (see [1], [2], [3], [4], [8], [25]). An example of such class is the Gevrey

class of Roumieu type γs(G) of order s, with s ≥ 1 described as follow: φ ∈ γs(G) if for every

h > 0, there exists Ch > 0 such that

‖∂αφ‖L∞ ≤ Ch|α||α|!s, α ∈ Nn
0 .

When 1 ≤ s1 < s2, we have Cω(G) ( γs1(G) ( γs2(G) ( C∞(G). Notice that γ1(G) =

Cω(G).

In [11], A. Dasgupta and M. Ruzhansky have characterized the Gevrey class of functions in

terms of their Fourier coefficients.

In this dissertation we will use the characterization given by A. Dasgupta and M. Ruzhansky

in [12] to extend our results to the framework of Komatsu classes, which are also classes of

functions between Cω(G) and C∞(G). We point out that our examples will be given mainly in

Gevrey classes, which are a particular example of Komatsu classes.

Let {Mk}k∈N0 be a sequence of positive numbers such that there exist H > 0 and A ≥ 1

satisfying

(M.0) M0 = 1

(M.1) (stability) Mk+1 ≤ AHkMk, k = 0, 1, 2, . . . .

(M.2) M2k ≤ AH2kM2
k , k = 0, 1, 2, . . . .

(M.3) ∃`, C > 0 such that k! ≤ C`kMk, for all k ∈ N0.

(M.4)
Mr

r!

Ms

s!
≤ Mr+s

(r + s)!
, ∀r, s ∈ N0.

We will assume also the logarithmic convexity:

(LC) M2
k ≤Mk−1Mk+1, k = 1, 2, 3, . . . .
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Given any sequence {Mk} that satisfies (M.0)–(M.3), there exists an alternative sequence

that satisfies the logarithmic convexity and defines the same classes that we will study. So

assuming (LC) does not restrict the generality compared to (M.0)–(M.3).

From (M.0) and (LC) we have Mk ≤Mk+1, for all k ∈ N, that is, {Mk} is a non-decreasing

sequence. Moreover, for k ≤ n we have

Mk ·Mn−k ≤Mn.

The condition (M.2) is equivalent to Mk ≤ AHk min
0≤q≤k

MqMk−q, (see [33], Lemma 5.3).

1.2.1 Associated function

Given a sequence {Mk} we define the associated function as

M(r) := sup
k∈N0

log
rk

Mk

, r > 0,

and M(0) := 0. Notice that M is a non-decreasing function.

Example 1.33. Let s ≥ 1 and consider Mk = (k!)s. This sequence satisfies the conditions

above and we have

M(r) ' r1/s.

In the next propositions we present some technical results of the associated function that we

will use throughout this chapter.

Follow by the definition that for every r > 0 we have

exp{−M(r)} = inf
k∈N0

Mk

rk
(1.12)

exp{M(r)} = sup
k∈N0

rk

Mk

(1.13)

Proposition 1.34. For every r, s > 0 we have

(i) exp{−M(r)} exp{−M(s)} ≤ exp
{
−M

(
r+s

2

)}
(ii) exp{M(r)} exp{M(s)} ≤ A exp {M (H(r + s))}

Proof. (i) Let r, s > 0. By (1.12) we obtain

exp{−M(r)} exp{−M(s)} ≤ Mj

rj
M`

s`
≤ Mj+`

rjs`
,
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for all j, ` ∈ N0. Let k ∈ N0. Thus for ` = k − j we have

exp{M(r)} exp{M(s)} ≥ rjsk−j

Mk

,

so

2k exp{M(r)} exp{M(s)} =
k∑
j=0

(
k

j

)
exp{M(r)} exp{M(s)} ≥

k∑
j=0

(
k

j

)
rjsk−j

Mk
=

(r + s)k

Mk
,

that is,

exp{−M(r)} exp{−M(s)} ≤ Mk(
r+s

2

)k ,
for all k ∈ N0. Therefore

exp{−M(r)} exp{−M(s)} ≤ exp

{
−M

(
r + s

2

)}
.

(ii) Let r, s > 0. We have Mk+` ≤ AHk+`MkM` and rks` ≤ (r + s)k+`, for all k, ` ∈ N0.

Thus

log
rk

Mk

+ log
s`

M`

= log
rks`

MkM`

≤ logA
H(r + s)k+`

Mk+`

= logA+ log
(H(r + s))k+`

Mk+`

≤ logA+M(H(r + s)).

For every ` ∈ N0 fixed we have

log
rk

Mk

≤ logA+M(H(r + s))− log
s`

M`

=⇒ M(r) ≤ logA+M(H(r + s))− log
s`

M`

.

Now,

log
s`

M`

≤ logA+M(H(r + s))−M(r), ∀` ∈ N0,

which implies that

M(s) ≤ logA+M(H(r + s))−M(r).

By the properties of the exponential function we obtain

exp{M(r)} exp{M(s)} ≤ A exp {M (H(r + s))} .

Proposition 1.35. For every r, s > 0 and t ∈ N0 we have

(i) rt exp{−M(sr)} ≤ A (Hs−1)
t
Mt exp{−M(H−1sr)};

(ii) rt exp{M(sr)} ≤ As−tMt exp{M(Hsr)}.
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Proof. (i) Let r, s, t > 0. We have

rt exp{−M(sr)} ≤ rt
Mk

skrk
= s−t

Mk

(sr)k−t
, ∀k ≥ t.

Since Mk ≤ AHkMtMk−t, for all k ≥ t, we obtain

rt exp{−M(sr)} ≤ As−tHkMt
Mk−t

(sr)k−t
= A(s−1H)tMt

Mk−t

(H−1sr)k−t
, ∀k ≥ t,

Therefore

rt exp{−M(sr)} ≤ A
(
Hs−1

)t
Mt exp{−M(H−1sr)}.

(ii) Let r, s, t > 0. We have

rt exp{M(sr)} = rt sup
k∈N0

(sr)k

Mk

= sup
k∈N0

skrk+t

Mk

= s−t sup
k∈N0

(sr)k+t

Mk

Since Mk+t ≤ AHk+tMkMt, we obtain

rt exp{M(sr)} ≤ As−tMt sup
k∈N0

(Hsr)k+t

Mk+t

≤ As−tMt sup
`∈N0

(Hsr)`

M`

.

Therefore

rt exp{M(sr)} ≤ As−tMt exp{M(Hsr)}.

Proposition 1.36. Let G be a compact Lie group. For every N,L, δ > 0 there exists C > 0

such that

〈ξ〉N exp{−δM(L〈ξ〉)} ≤ C,

for all [ξ] ∈ Ĝ.

Proof. Let N,L, δ > 0. Then

〈ξ〉N exp{−δM(L〈ξ〉)} = 〈ξ〉N(exp{−M(L〈ξ〉)})δ ≤ 〈ξ〉N M δ
k

(L〈ξ〉)kδ
,

for all k ∈ N0. In particular, take k0 ∈ N0 such that k0δ > N . So,

〈ξ〉N exp{−δM(L〈ξ〉)} ≤ 〈ξ〉N−k0δ
M δ

k0

Lk0δ
≤
M δ

k0

Lk0δ
= C.

Proposition 1.37. Let G be a compact Lie group and let L > 0. Then

exp
{
−1

2
M (L〈ξ〉)

}
≤
√
A exp{−M (L2〈ξ〉)}, (1.14)

for all [ξ] ∈ Ĝ, where L2 =
L

H
.
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Proof. Notice that

exp{−1
2
M(L〈ξ〉)} = inf

k∈N0

M
1/2
k

(L〈ξ〉)k/2
≤ inf

`∈N0

M
1/2
2`

(L〈ξ〉)`
.

By the property (M.2), we have

M2` ≤ AH2`M2
` .

This implies

exp{−1
2
M(L〈ξ〉)} ≤ inf

`∈N0

√
A
H`M`

(L〈ξ〉)`
=
√
A inf
`∈N0

M`(
L〈ξ〉
H

)` =
√
A exp{−M(L2〈ξ〉)},

where L2 = L
H

.

1.2.2 Komatsu class of Roumieu type

Definition 1.38. The Komatsu class of Roumieu type Γ{Mk}(G) is the space of all complex-

valued C∞ functions f on G such that there exist h > 0 and C > 0 satisfying

‖∂αf‖L2(G) ≤ Ch|α|M|α|, ∀α ∈ Nd
0.

In the definition above, we could take theL∞-norm and obtain the same space. The elements

of Γ{Mk}(G) are often called ultradifferentiable functions. Notice that by (M.3) we have that

Γ{Mk}(G) contains the analytic functions on G.

Example 1.39. Let G be a compact Lie group and φ = (φij)
dφ
i,j=1, [φ] ∈ Ĝ. Let us show that

φij ∈ Γ{Mk}(G) for all sequences {Mk}k∈N0 satisfying the conditions (M.0)–(M.3).

Let β ∈ Nd
0, so

|∂βφij(x)| =

∣∣∣∣∣∣
dφ∑
`=1

ξi`(x)σ∂β(φ)`j

∣∣∣∣∣∣
≤

dφ∑
`=1

|ξi`(x)||σ∂β(φ)`j|

≤ C〈φ〉M‖σ∂β(φ)‖op
(1.10)
≤ C〈φ〉M(C0〈φ〉)|β|,
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where M ≥ dimG
2

. Take h = C0〈φ〉 and by the fact that Mk ≥ 1, for all k ∈ N0, we conclude

that

‖∂βφij‖L2(G) ≤ Ch|β|M|β|

and then φij ∈ Γ{Mk}(G).

Theorem 1.40. Assume conditions (M.0)–(M.3). The following statements about a function

f ∈ C∞(G) are equivalent:

(i) f ∈ Γ{Mk}(G);

(ii) There exist constants C > 0, L > 0 such that

‖f̂(φ)‖HS ≤ C exp{−M(L〈φ〉))}, ∀[φ] ∈ Ĝ;

(iii) There exist constants C > 0, L > 0 such that

|f̂(φ)ij| ≤ C exp{−M(L〈φ〉))}, ∀[φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

Proof. The equivalence (i)⇔ (ii) can be found on [12], Theorem 2.4, page 8487. Let us prove

that (ii)⇔ (iii). The first implication is trivial because

|f̂(φ)ij| ≤ ‖f̂(φ)‖HS,

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ. Conversely, we have

‖f̂(φ)‖2
HS =

dφ∑
i,j=1

|f̂(φ)ij|2

≤
dφ∑
i,j=1

C2 exp{−2M(L〈φ〉)}

= d2
φC

2 exp{−2M(L〈φ〉)},

that is,

‖f̂(φ)‖HS ≤ Cdφ exp{−M(L〈φ〉)}.

By Proposition 1.25, we have

‖f̂(φ)‖HS ≤ C〈φ〉N exp{−M(L〈φ〉)},



Preliminaries 37

where N ≥ dimG
2

. Using now Proposition 1.36 and 1.37 we obtain

‖f̂(φ)‖HS ≤ C〈φ〉N exp{−M(L〈φ〉)}

= C
(
〈φ〉N exp

{
−1

2
M(L〈φ〉)

})
exp

{
−1

2
M(L〈φ〉)

}
≤ C exp{−M(L2〈φ〉)}

We also can characterise the elements of the dual Γ′{Mk}(G) by its Fourier coefficients.

Theorem 1.41. Let Γ′{Mk}(G) the dual space of Γ{Mk}(G). The following statements about a

linear functional defined on Γ{Mk}(G) are equivalent:

(i) u ∈ Γ′{Mk}(G);

(ii) For every B > 0 there exists KB > 0 such that

‖û(φ)‖HS ≤ KB exp{M(B(〈φ〉))}, ∀[φ] ∈ Ĝ;

(iii) For every B > 0 there exists KB > 0 such that

|û(φ)ij| ≤ KB exp{M(B〈φ〉))}, ∀[φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

Proof. The equivalence (i)⇔ (ii) can be found on [12], Theorem 2.4, page 8488. Let us prove

that (ii)⇔ (iii). The first implication is trivial because

|û(φ)ij| ≤ ‖û(φ)‖HS,

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ. On the other hand,

‖û(φ)‖2
HS =

dφ∑
i,j=1

|û(φ)ij|2

≤
dφ∑
i,j=1

K2
B exp{2M(B〈φ〉)}

= d2
φK

2
B exp{2M(B〈φ〉)},

that is, for all B > 0, there exists KB > 0 such that

‖û(φ)‖HS ≤ dφKB exp{M(B〈φ〉)}.
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By Proposition 1.25, we have dφ ≤ C〈φ〉M for some M > dimG
2

and by Proposition 1.36, for

all B > 0 there exists CB such that

〈φ〉M ≤ CB exp{M(B〈φ〉)},

for all [φ] ∈ Ĝ. By Proposition 1.37,

‖û(φ)‖HS ≤ KB exp{2M(B〈φ〉)} ≤ KB exp{M(B̃〈φ〉)},

where B̃ = BH . Therefore u ∈ Γ′{Mk}(G).

1.2.3 Komatsu class of Beurling type

Next, to define Komatsu classes of Beurling type, we have to change the condition (M.3) by

the following one:

(M.3’) ∀` > 0, ∃C` such that k! ≤ C``
kMk, for all k ∈ N0.

Notice that the condition (M.3’) implies the condition (M.3).

Definition 1.42. The Komatsu class of Beurling type Γ(Mk)(G) is the space of C∞ functions f

on G such that for every h > 0 there exists Ch > 0 such that we have

‖∂αf‖L2(G) ≤ Chh
|α|M|α|, ∀α ∈ Nd

0.

Theorem 1.43. Assume conditions (M.0)–(M.3’). The following statements about a function

f ∈ C∞(G) are equivalent:

(i) φ ∈ Γ(Mk)(G);

(ii) For every L > 0 there exists CL > 0 such that

‖f̂(φ)‖HS ≤ CL exp{−M(L(〈φ〉))}, ∀[φ] ∈ Ĝ;

(iii) For every L > 0 there exists CL > 0 such that

|f̂(φ)ij| ≤ CL exp{−M(L〈φ〉))}, ∀[φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

Example 1.44. LetG be a compact group and φ = (φij)
dφ
i,j=1, [φ] ∈ Ĝ. We have φij ∈ Γ(Mk)(G)

for all sequences {Mk}k∈N0 satisfying the conditions (M.0)–(M.3’) because

φ̂ij(ξ)mn = 〈φij, ξnm〉L2(G) =

 0, if ξ 6= φ,

1
dφ
δinδjm, if ξ = φ,

and then φij satisfies the statement (iii) of the previous theorem.
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Theorem 1.45. Let Γ′(Mk)(G) the dual space of Γ(Mk)(G). The following statements about a

linear functional defined on Γ(Mk)(G) are equivalent:

(i) u ∈ Γ′(Mk)(G);

(ii) There exist K, B > 0 such that

‖û(φ)‖HS ≤ K exp{M(B(〈φ〉))}, ∀[φ] ∈ Ĝ;

(iii) There exist K, B > 0 such that

|û(φ)ij| ≤ K exp{M(B〈φ〉))}, ∀[φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.
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Part I

Smooth case
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Chapter 2

Constant coefficient vector fields

Let G1 and G2 be compact Lie groups, G := G1 × G2, and consider the linear operator

L : C∞(G)→ C∞(G) defined by

L := X1 + cX2,

where X1 ∈ g1, X2 ∈ g2 and c ∈ C. Thus, for each u ∈ C∞(G) we have

Lu(x1, x2) := X1u(x1, x2) + cX2u(x1, x2)

:=
d

dt
u(x1 exp(tX1), x2)

∣∣∣∣
t=0

+ c
d

ds
u(x1, x2 exp(sX2))

∣∣∣∣
s=0

.

The operator L extends to distributions in a natural way, that is, if u ∈ D′(G), then

〈Lu, ϕ〉G := −〈u, Lϕ〉G, ϕ ∈ C∞(G).

In this chapter, we present necessary and sufficient conditions for the vector field L to be

globally hypoelliptic and to be globally solvable. After that, we present examples recover-

ing known results in the torus and presenting examples in T1 × S3 and S3 × S3. Because of

the presented examples and by the validity of Greenfield-Wallach conjecture on compact Lie

groups, we investigate the global properties of perturbations of L by zero-order terms and we

also present weaker notions of global hypoellipticity.

The main tool that we will use in the development of our results is the partial Fourier series

with respect to each one of the Lie groups. The details and main results about partial Fourier

series on compact Lie groups can be found on Appendix A.
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2.1 Global hypoellipticity

Definition 2.1. Let G be a compact Lie group. We say that an operator P : D′(G)→ D′(G) is

globally hypoelliptic if the conditions u ∈ D′(G) and Pu ∈ C∞(G) imply that u ∈ C∞(G).

Consider the equation

Lu(x1, x2) = X1u(x1, x2) + cX2u(x1, x2) = f(x1, x2),

where f ∈ C∞(G). For each [ξ] ∈ Ĝ1, we can choose a representative ξ ∈ Rep(G1) such that

σX1(ξ)mn = iλm(ξ)δmn, 1 ≤ m,n ≤ dξ,

where λm(ξ) ∈ R for all [ξ] ∈ Ĝ1 and 1 ≤ m ≤ dξ (see Proposition 1.31). Similarly, for each

[η] ∈ Ĝ2, we can choose a representative η ∈ Rep(G2) such that

σX2(η)rs = iµr(η)δrs, 1 ≤ r, s ≤ dη,

where µr(η) ∈ R for all [η] ∈ Ĝ2 and 1 ≤ r ≤ dη.

Suppose that u ∈ C∞(G). Thus, taking the partial Fourier coefficient with respect to the

first variable at x2 ∈ G2 (see Definitions A.1 and A.2) we obtain

f̂(ξ, x2) = L̂u(ξ, x2)

=

∫
G1

Lu(x1, x2)ξ(x1)∗ dx1

=

∫
G1

X1u(x1, x2)ξ(x1)∗ dx1 + c

∫
G1

X2u(x1, x2)ξ(x1)∗ dx1

= X̂1u(ξ, x2) + cX2

∫
G1

u(x1, x2)ξ(x1)∗ dx1

= σX1(ξ)û(ξ, x2) + cX2û(ξ, x2).

Hence, for each x2 ∈ G2, we have that f̂(ξ, x2) ∈ Cdξ×dξ and

f̂(ξ, x2)mn = iλm(ξ)û(ξ, x2)mn + cX2û(ξ, x2)mn, 1 ≤ m,n ≤ dξ.

Now, taking the Fourier coefficient of f̂(ξ, ·)mn with respect to the second variable, we obtain

̂̂f(ξ, η)mn =

∫
G2

f̂(ξ, x2)mnη(x2)∗ dx2

=

∫
G2

(iλm(ξ)û(ξ, x2)mn + cX2û(ξ, x2)mn)η(x2)∗ dx2

= iλm(ξ)

∫
G2

û(ξ, x2)mnη(x2)∗ dx2 + c

∫
G2

X2û(ξ, x2)mnη(x2)∗ dx2

= iλm(ξ) ̂̂u(ξ, η)mn + cσX2(η) ̂̂u(ξ, η)mn.
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Thus, ̂̂f(ξ, η)mn ∈ Cdη×dη and

̂̂f(ξ, η)mnrs = i(λm(ξ) + cµr(η)) ̂̂u(ξ, η)mnrs , 1 ≤ r, s ≤ dη. (2.1)

From this we can conclude that

̂̂f(ξ, η)mnrs = 0, whenever λm(ξ) + cµr(η) = 0. (2.2)

Moreover, if λm(ξ) + cµr(η) 6= 0, then

̂̂u(ξ, η)mnrs =
1

i(λm(ξ) + cµr(η))
̂̂f(ξ, η)mnrs . (2.3)

We begin by presenting the following necessary condition for global hypoellipticity of the

vector field L = X1 + cX2.

Proposition 2.2. Suppose that the set

N = {([ξ], [η]) ∈ Ĝ1 × Ĝ2; λm(ξ) + cµr(η) = 0, for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη} (2.4)

has infinitely many elements. Then there exists u ∈ D′(G) \ C∞(G) such that

Lu = 0.

In particular, L is not globally hypoelliptic.

Proof. Consider the sequence

̂̂u(ξ, η)mnrs =

 1, if λm(ξ) + cµr(η) = 0,

0, otherwise.

Notice that for any [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη we have

| ̂̂u(ξ, η)mnrs | ≤ 〈ξ〉+ 〈η〉.

Thus by the characterization of distributions by Fourier coefficients (Theorem A.3) we conclude

that u ∈ D′(G), where

u =
∑

[ξ]∈Ĝ1

∑
[η]∈Ĝ2

dξdη

dξ∑
m,n=1

dη∑
r,s=1

̂̂u(ξ, η)mnrsξnmηsr.

Since there exist infinitely many representations such that ̂̂u(ξ, η)mnrs = 1, it follows from

Theorem A.3 that u /∈ C∞(G). Furthermore, we have

̂̂Lu(ξ, η)mnrs = i(λm(ξ) + cµr(η)) ̂̂u(ξ, η)mnrs = 0,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. Then, by Plancherel formula (1.3), we

conclude that Lu = 0.
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Theorem 2.3. The operator L = X1 + cX2 is globally hypoelliptic if and only if the following

conditions are satisfied:

1. The set

N = {([ξ], [η]) ∈ Ĝ1 × Ĝ2; λm(ξ) + cµr(η) = 0, for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη}

is finite.

2. ∃C, M > 0 such that

|λm(ξ) + cµr(η)| ≥ C(〈ξ〉+ 〈η〉)−M , (2.5)

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη, whenever λm(ξ) + cµr(η) 6= 0.

Proof. ( ⇐= ) Suppose that Lu = f ∈ C∞(G) for some u ∈ D′(G). Let us prove that

u ∈ C∞(G). Since the set N is finite, there exists C > 0 such that

| ̂̂u(ξ, η)mnrs | ≤ C,

for all ([ξ], [η]) ∈ N , 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη. Let N ∈ N. Then, for ([ξ], [η]) ∈ N , we

have

| ̂̂u(ξ, η)mnrs | ≤ C(〈ξ〉+ 〈η〉)N(〈ξ〉+ 〈η〉)−N

≤ C ′N(〈ξ〉+ 〈η〉)−N

where C ′N = max
([ξ],[η])∈N

{
C(〈ξ〉+ 〈η〉)N

}
. On the other hand, if ([ξ], [η]) /∈ N , by (2.3) and (2.5)

we obtain

| ̂̂u(ξ, η)mnrs | =
1

|λm(ξ) + cµr(η)|
| ̂̂f(ξ, η)mnrs |

≤ C−1(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs |

Since f ∈ C∞(G), there exists CN+M > 0 such that

| ̂̂f(ξ, η)mnrs | ≤ CN+M(〈ξ〉+ 〈η〉)−(N+M)

Thus,

| ̂̂u(ξ, η)mnrs | ≤ C−1CN+M(〈ξ〉+ 〈η〉)M(〈ξ〉+ 〈η〉)−(N+M)

= C ′′N(〈ξ〉+ 〈η〉)−N ,
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where C ′′N = C−1CN+M . Hence, if ([ξ], [η]) /∈ N we conclude that

| ̂̂u(ξ, η)mnrs | ≤ C ′′N(〈ξ〉+ 〈η〉)−N .

Setting CN := max{C ′N , C ′′N}, we have

| ̂̂u(ξ, η)mnrs | ≤ CN(〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2. Therefore by Theorem A.3 we conclude that u ∈ C∞(G).

( =⇒ ) Let us prove the result by contradiction. If Condition 1 were not satisfied, by Propo-

sition 2.2, there would be u ∈ D′(G)\C∞(G) such that Lu = 0, contradicting the hypothesis

of global hypoellipticity of L. So, let us assume that Condition 2 is not satisfied, then for every

M ∈ N, we choose [ξM ] ∈ Ĝ1 and [ηM ] ∈ Ĝ2 such that

0 < |λm(ξM) + cµr(ηM)| ≤ (〈ξM〉+ 〈ηM〉)−M , (2.6)

for some 1 ≤ m ≤ dξM and 1 ≤ r ≤ dηM .

Let A = {([ξj], [ηj])}j∈N. It is easy to see that A has infinitely many elements. Define

̂̂u(ξ, η)mnrs =

 1, if ([ξ], [η]) = ([ξj], [ηj]) for some j ∈ N and (2.6) is satisfied,

0, otherwise.

In this way, u ∈ D′(G)\C∞(G). Let us show that Lu = f ∈ C∞(G).

If ([ξ], [η]) /∈ A, then | ̂̂f(ξ, η)mnrs| = 0. Moreover, for every M ∈ N, we have

| ̂̂f(ξM , ηM)mnrs | = |λm(ξM) + cµr(ηM)|| ̂̂u(ξM , ηM)mnrs |

≤ (〈ξM〉+ 〈ηM〉)−M

for every element of A.

Fix N > 0. If M > N , then

| ̂̂f(ξM , ηM)mnrs | ≤ (〈ξM〉+ 〈ηM〉)−M ≤ (〈ξM〉+ 〈ηM〉)−N .

For M ≤ N we have∣∣∣ ̂̂f(ξM , ηM)mnrs

∣∣∣ =
∣∣∣ ̂̂f(ξM , ηM)mnrs

∣∣∣ (〈ξM〉+ 〈ηM〉)N(〈ξM〉+ 〈ηM〉)−N

≤ C ′N(〈ξM〉+ 〈ηM〉)−N .

where C ′N := max
M≤N
m,n,r,s

{
| ̂̂f(ξM , ηM)mnrs |(〈ξM〉+ 〈ηM〉)N

}
. For CN = max{C ′N , 1} we ob-

tain

| ̂̂f(ξ, η)mnrs | ≤ CN(〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη. Therefore f ∈ C∞(G), which

contradicts the assumption that L is globally hypoelliptic.
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2.2 Global solvability

In the literature there are several notions for the solvability of an operator, mainly depending

on the functional environment in which one is working and what one intends to study. So the

first step here is to define precisely what we mean by the global solvability.

Given a function (or distribution) f defined on G, assume that u ∈ D′(G) is a solution of

Lu = f . By taking the partial Fourier coefficient with respect to x1 and x2 separately, and

following the same procedure of the last subsection, we obtain from (2.2) that

λm(ξ) + cµr(η) = 0 =⇒ ̂̂f(ξ, η)mnrs = 0.

Therefore, let us consider the following set

K := {w ∈ D′(G); ̂̂w (ξ, η)mnrs = 0, whenever λm(ξ) + cµr(η) = 0}.

If f /∈ K, then there is no u ∈ D′(G) such that Lu = f . We call the elements ofK of admissible

functions (distributions) for the solvability of L.

Definition 2.4. We say that the operator L is globally solvable if L(D′(G)) = K.

Theorem 2.5. The operator L = X1+cX2 is globally solvable if and only if there existC, M >

0 such that

|λm(ξ) + cµr(η)| ≥ C(〈ξ〉+ 〈η〉)−M , (2.7)

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη whenever λm(ξ) + cµr(η) 6= 0.

Proof. (⇐= ) For each f ∈ K define

̂̂u(ξ, η)mnrs =

 0, if λm(ξ) + cµr(η) = 0,

−i(λm(ξ) + cµr(η))−1 ̂̂f(ξ, η)mnrs , otherwise.
(2.8)

Let us show that { ̂̂u(ξ, η)mnrs} is the sequence of Fourier coefficient of an element u ∈ D′(G).

Since f ∈ D′(G), there exists N ∈ N and C > 0 such that

| ̂̂f(ξ, η)mnrs | ≤ C(〈ξ〉+ 〈η〉)N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. So

| ̂̂u(ξ, η)mnrs | = |λm(ξ) + cµr(η)|−1| ̂̂f(ξ, η)mnrs | (2.9)

≤ C(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs |

≤ C(〈ξ〉+ 〈η〉)N+M
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Therefore u ∈ D′(G) and Lu = f .

( =⇒ ) Let us proceed by contradiction by constructing an element f ∈ K such that there

is no u ∈ D′(G) satisfying Lu = f .

If (2.7) is not satisfied, for each M ∈ N, there exists [ξM ] ∈ Ĝ1 and [ηM ] ∈ Ĝ2 such that

0 < |λm̃(ξM) + cµr̃(ηM)| < (〈ξM〉+ 〈ηM〉)−M , (2.10)

for some 1 ≤ m̃ ≤ dξM and 1 ≤ r̃ ≤ dηM . We can suppose that 〈ξM〉 + 〈ηM〉 ≤ 〈ξN〉 + 〈ηN〉

when M ≤ N . Let A = {([ξj], [ηj])}j∈N. Consider f ∈ K defined by

̂̂f(ξ, η)mnrs =

 1, if ([ξ], [η]) = ([ξj], [ηj]) for some j ∈ N and (2.10) is satisfied,

0, otherwise.

Suppose that there exits u ∈ D′(G) such that Lu = f . In this way, its Fourier coefficients

must satisfy

i(λm(ξ) + cµr(η)) ̂̂u(ξ, η)mnrs = ̂̂f(ξ, η)mnrs .

So

| ̂̂u(ξM , ηM)m̃1r̃1| = |λm̃(ξM) + cµr̃(ηM)|−1|| ̂̂f(ξM , ηM)m̃1r̃1|

> (〈ξM〉+ 〈ηM〉)M ,

where m̃ and r̃ are coefficients that satisfy (2.10). Thus

‖ ̂̂u(ξM , ηM)‖HS > (〈ξM〉+ 〈ηM〉)M ,

for all M > 0, which contradicts the fact that u ∈ D′(G). Therefore there does not exist

u ∈ D′(G) such that Lu = f .

Notice that the estimate for the global solvability in the statement of the last theorem is

exactly the same as one of the conditions to obtain global hypoellipticity announced in (2.5),

thus we have the following corollary.

Corollary 2.6. If L is globally hypoelliptic, then L is globally solvable.

A more detailed analysis of the last proof shows that it is possible to obtain a better control

on the Fourier coefficients of u when f is smooth, more precisely, we have the following result.

Proposition 2.7. If L is globally solvable and f ∈ K ∩ C∞(G), then there exists u ∈ C∞(G)

such that Lu = f .
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Proof. Let f ∈ K∩C∞(G) and define u as in (2.8). Since L is globally solvable, it holds (2.7)

and then by (2.9)

| ̂̂u(ξ, η)mnrs | = |λm(ξ) + cµr(η)|−1| ̂̂f(ξ, η)mnrs |

≤ C(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs |.

In view of the smoothness of f , for every N > 0 there exists CN > 0 such that

| ̂̂f(ξ, η)mnrs | ≤ CN(〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. Hence

| ̂̂u(ξ, η)mnrs | ≤ C(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs | ≤ CN+M(〈ξ〉+ 〈η〉)−N .

Therefore u ∈ C∞(G) and Lu = f .

2.3 Examples

In this section we recover some classical examples of S. Greenfield and N. Wallach (see

[26]) on the global hypoellipticity and global solvability in tori (T2 and Td) and present a class

of examples in T1 × S3 and in S3 × S3.

Example 2.8. G = T2

Set G1 = G2 = T1, where T1 = R/2πZ. Since T1 is abelian, the irreducible unitary

representations of T1 are unidimensional. Moreover the dual T̂1 can be identified to Z. For

each k ∈ Z, the function ek : T1 → U(C) defined by

ek(t) := eitk

is an element of T̂1 and

T̂1 = {ek}k∈Z.

The Haar measure on T1 is the normalized Lebesgue measure and

〈k〉 := 〈ek〉 =
√

1 + k2.

Let c ∈ C and consider the operator

L = ∂t + c∂x, (t, x) ∈ T1 × T1.
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Notice that

σ∂t(ek) = ek(t)
∗(∂tek)(t) = e−itk(ikeitk) = ik,

that is, λ(ek) = k, for all k ∈ Z. Thus, if Lu = f , then

̂̂f(k, `) = i(k + c`) ̂̂u(k, `).

In this case,

N = {(k, `) ∈ Z2; k + c` = 0}.

By Theorem 2.3, L is globally hypoelliptic if and only if N is finite and there exist C,M > 0

such that

|k + c`| ≥ C(〈k〉+ 〈`〉)−M

for all (k, `) ∈ Z2, whenever k + a` 6= 0. For (k, `) 6= (0, 0), we have

|k|+ |`| ≤ 〈k〉+ 〈`〉 ≤ 3(|k|+ |`|),

then the second condition of the Theorem 2.3 becomes

|k + c`| ≥ C(|k|+ |`|)−M (2.11)

for all (k, `) ∈ Z2, whenever k + c` 6= 0.

Notice thatN is an infinity set if and only if c ∈ Q. Moreover, if c /∈ Q, thenN = {(0, 0)}.

Suppose that =(c) 6= 0. If ` 6= 0, then

|k + a`| ≥ |=(c)||`| ≥ |=(c)|(|k|+ |`|)−1.

If ` = 0, we have k 6= 0 and

|k + a`| = |k| ≥ (|k|+ |`|)−1.

Take C = max{1, |=(c)|}. Then

|k + c`| ≥ C(|k|+ |`|)−1,

for all (k, `) ∈ Z2 {(0, 0)}. Therefore, if =(c) 6= 0 then L is globally hypoelliptic.

Suppose now that =(c) = 0. We recall that an irrational number c is called a Liouville

number if it can be approximated by rational numbers to any order. That is, for every positive

integer N there is K > 0 and infinitely many integer pairs (k, `) so that∣∣∣∣c− k

`

∣∣∣∣ < K

`N
.
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Notice that the inequality (2.11) is satisfied if and only if c is an irrational non-Liouville

number.

We conclude that L = ∂t + c∂x is globally hypoelliptic if and only if =(c) 6= 0 or c is an

irrational non-Liouville number.

For solvability we need to analyze the condition 2 of the Theorem 2.3 when c ∈ Q. Suppose

that c = p
q
, p ∈ Z and q ∈ N. We have

|k + c`| =
∣∣∣∣k +

p

q
`

∣∣∣∣ =
1

q
|qk + p`| ≥ 1

q
≥ 1

q
(|k|+ |`|)−1,

for all (k, `) ∈ Z2, whenever qk + p` 6= 0.

Therefore, L = ∂t + c∂x is globally solvable if and only if =(c) 6= 0, or c ∈ Q, or c is an

irrational non-Liouville number.

Example 2.9. G = Td

From the above example we can extend the analysis for operators defined on Td. Let

L =
d∑
j=1

cj∂tj , cj ∈ C

If Lu = f , then

f̂(k1, · · · , kd) = i

(
d∑
j=1

cjkj

)
û(k1, · · · , kd).

The set N is

N =

{
k ∈ Zd;

d∑
j=1

cjkj = 0

}
,

and by Theorem 2.3, L is globally hypoelliptic if and only ifN is finite and there exists C,M >

0 such that ∣∣∣∣∣
d∑
j=1

cjkj

∣∣∣∣∣ ≥ C

(
d∑
j=1

|kj|

)−M
,

for all k ∈ Zd whenever
d∑
j=1

cjkj 6= 0.

For instance, if some cj = 0, then the set N is infinity, which implies that L is not globally

hypoelliptic. It is easy to see that if all cj ∈ Q, them L is globally solvable, even if some of

cj = 0.

If cj = 1 for j = 1, · · · , d− 1 and =(cd) 6= 0, than L is globally hypoelliptic. The same is

true if we consider cd being an irrational non-Liouville number.

Example 2.10. G = T1 × S3
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Let Ŝ3 be the unitary dual of S3, that is, Ŝ3 consists of equivalence classes [t`] of continuous

irreducible unitary representations t` : S3 → C(2`+1)×(2`+1), ` ∈ 1
2
N0, of matrix-valued func-

tions satisfying t`(xy) = t`(x)t`(y) and t`(x)∗ = t`(x)−1 for all x, y ∈ S3. We will use the

standard convention of enumerating the matrix elements t`mn of t` using indices m,n ranging

between −` to ` with step one, i.e. we have −` ≤ m,n ≤ ` with ` − m, ` − n ∈ N0. For

` ∈ 1
2
N0 we have

〈`〉 :=
〈
t`
〉

=
√

1 + `(`+ 1).

The details about the Fourier analysis on S3 can be found in Chapter 11 of [35].

Let X be a smooth vector field on S3 and c ∈ C. Consider the following operator defined

on T1 × S3:

L = ∂t + cX.

Using rotation on S3, without loss of generality, we may assume that the vector field X has the

symbol

σX(`)mn = imδmn, ` ∈ 1
2
N0, −` ≤ m,n ≤ `, `−m, `− n ∈ N0

with δmn standing for the Kronecker’s delta (see [35], [37], and [38]). Hence, if Lu = f , then

̂̂f(k, `)mn = i(k + cm) ̂̂u(k, `)mn,

where k ∈ Z, ` ∈ 1
2
N0, −` ≤ m,n ≤ ` and `−m, `− n ∈ N0. In this case,

N = {(k, `) ∈ Z× 1
2
N0; k + cm = 0, for some − ` ≤ m ≤ `, `−m ∈ N0}.

By Theorem 2.3, L is globally hypoelliptic if and only if N is finite and there exist C,M > 0

such that

|k + cm| ≥ C(〈k〉+ 〈`〉)−M (2.12)

for all (k, `) ∈ Z × 1
2
N0, −` ≤ m ≤ `, ` −m ∈ N0 whenever k + cm 6= 0. For ` ∈ 1

2
N0, we

have
1√
2

(1 + `) ≤ 〈t`〉 ≤ 1 + `

and we can write (2.12) as

|k + cm| ≥ C(|k|+ 1 + `)−M

for all (k, `) ∈ Z× 1
2
N0, −` ≤ m ≤ `, `−m ∈ N0 whenever k + cm 6= 0.

Notice that (0, `) ∈ N , for all ` ∈ N0, so N has infinitely many elements and then L is not

globally hypoelliptic for any c ∈ C.
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The analysis of the global solvability of L is similar to the T2 case and we have L globally

solvable if and only if =(c) 6= 0, or c ∈ Q, or c is an irrational non-Liouville number. For

instance, the operator

L = ∂t + αX,

where α is the continued fraction α =
[
101!, 102!, 103!, . . .

]
, is not globally solvable because α

is an irrational Liouville number (see page 162 of [29]).

Example 2.11. G = S3 × S3

Consider the operator

L = X1 + cX2,

where X1, X2 ∈ s3 and c ∈ C. Here, we assume that the vector field X1 acts only in the first

variable, while X2 acts only in the second variable. Following the ideas of Example 2.10, we

may assume that

σX1(`)mn = imδmn, ` ∈ 1
2
N0, −` ≤ m,n ≤ `, `−m, `− n ∈ N0,

and

σX2(κ)rs = irδrs, κ ∈ 1
2
N0, −κ ≤ r, s ≤ κ, κ− r, κ− s ∈ N0.

Hence, if Lu = f , we have

̂̂f(κ, `)mnrs = i(r + cm) ̂̂u(κ, `)mnrs ,

where κ, ` ∈ 1
2
N0,−κ ≤ r, s ≤ κ,−` ≤ m,n ≤ `, and , κ−r, κ−s, `−m, `−n ∈ N0. It is easy

to see that if (κ, `) ∈ N × N, then (κ, `) ∈ N . So the operator L is not globally hypoelliptic.

As in Example 2.10, we conclude that L is globally solvable if and only if =(c) 6= 0, or c ∈ Q,

or c is an irrational non-Liouville number. For instance, similarly to the previous example, we

notice that the operator

L = X1 + αX2

is not globally solvable, because α =
[
101!, 102!, 103!, . . .

]
is an irrational Liouville number.

2.4 Weaker notions of hypoellipticity

All the known examples of globally hypoelliptic vector fields are set on tori. Actually, in

1973, S. Greenfield and N. Wallach proposed the following conjecture.
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Conjecture 2.12 (Greenfield-Wallach). If a closed, connected, orientable manifold M admits

a globally hypoelliptic vector field X , then M is diffeomorphic to a torus and X is smoothly

conjugate to a constant Diophantine vector field.

In [22], G. Forni showed the equivalence between this conjecture and Katok’s conjecture,

about the existence of C∞–cohomology free smooth vector fields on closed, connected, ori-

entable smooth manifolds. From this equivalence we will show that on compact connected Lie

groups the set N defined in (2.4) contains only the trivial representation. First, let us define

what is a C∞–cohomology free vector field.

Definition 2.13. Let M be a closed, connected, orientable smooth manifold. A smooth vector

field X on M is C∞–cohomology free if for all f ∈ C∞(M) there exists a constant c(f) ∈ C

and u ∈ C∞(M) such that

Xu = f − c(f).

Theorem 2.14. [G. Forni [22]] Let X be a smooth vector field on a closed connected manifold

M . Then X is C∞–cohomology free if and only if X is globally hypoelliptic.

Proposition 2.15. If G is a compact connected Lie group and L is globally hypoelliptic, then

N has only one element.

Proof. Notice that for the trivial representations 1G1 and 1G2 we have λ1(1G1) = µ1(1G2) = 0,

so N 6= ∅. Suppose that there exists a non-trivial representation such that

λm(ξ) + cµr(η) = 0.

for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. Let f = ξ1m × η1r ∈ C∞(G), so

̂̂f(ξ, η)m1r1 =

∫
G1

∫
G2

f(x1, x2)ξ(x1)1m η(x2)1rdx2dx1

=

∫
G1

∫
G2

ξ(x1)1mη(x2)1rξ(x1)1m η(x2)1rdx2dx1

=

∫
G1

|ξ(x1)1m|2 dx1

∫
G2

|η(x2)1r|2 dx2

= (dξdη)
−1

Since L is globally hypoelliptic, by Theorem 2.14 L is C∞–cohomology free, then there exists

u ∈ C∞(G) such that

Lu = f − f0,
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where f0 =
∫
G
f dµG. We have

̂̂Lu(ξ, η)m1r1 = i(λm(ξ)) + cµr(η)) ̂̂u(ξ, η)m1r1 = 0,

which implies that
̂̂f − f0(ξ, η)m1r1 = 0.

Since ξ ⊗ η is not the trivial representation, by (1.1) we have ̂̂f0(ξ, η)m1r1 = 0, so

̂̂f(ξ, η)m1r1 = 0,

what is a contradiction because ̂̂f(ξ, η)m1r1 = (dξdη)
−1. Therefore N contains only the trivial

representation.

In view of Example 2.10 and Proposition 2.15, the following question naturally arises:

Question 2.1. Does there exist a compact Lie group G 6= Td such that there exists X ∈ g

satisfying σX(φ) singular for only finitely many [φ] ∈ Ĝ, that is, the set

Z = {[φ] ∈ Ĝ; λm(φ) = 0, for some 1 ≤ m ≤ dφ}

is finite, where σX(φ)mn = iλm(φ)δmn?

S. Greenfield and N. Wallach have proved this conjecture for compact Lie groups in [27].

The conjecture it was also proved for compact manifolds of dimensions 2 and 3, and in some

very particular cases, which are described by G. Forni in [22] and by L. Flaminio, G. Forni, and

F. Rodriguez Hertz in [21]. The answer to the above question is a way to obtain an alternative

proof for the Greenfield-Wallach conjecture on compact Lie groups.

In view of the validity of the Greenfield-Wallach conjecture on compact Lie groups, the

study of the global hypoellipticity of vector fields defined on closed manifolds is restricted to

tori. However, the study of the regularity of solutions of such vector fields is yet an interesting

subject. For this reason, in this section we will make some considerations looking to weaken the

usual concept of the global hypoellipticity and introduce what we will call global hypoellipticity

modulo kernel and globalW-hypoellipticity.

2.4.1 Global hypoellipticity modulo kernel

First, assuming that the setN has infinitely many elements, we will show that to reduce the

range of the operator does not help us to obtain a weaker version of global hypoellipticity.
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Proposition 2.16. Suppose that N has infinitely many elements. Then there is no subset A ⊆

C∞(G) that satisfies the condition: u ∈ D′(G) and Lu ∈ A imply that u ∈ C∞(G).

Proof. Assume that there exists a subset A ⊆ C∞(G) that satisfies the property above. Let

u ∈ D′(G) such that Lu ∈ A, then u ∈ C∞(G). By Proposition 2.2 there exists an element

v ∈ kerL such that v ∈ D′(G)\C∞(G). Since v ∈ kerL, we have L(u+ v) = Lu ∈ A, which

implies that u+ v ∈ C∞(G). Therefore v = (u+ v)− u ∈ C∞(G), a contradiction.

In view of Proposition 2.16 we give the following definition:

Definition 2.17. We say that an operator P : D′(G) → D′(G) is globally hypoelliptic modulo

kerP if the conditions u ∈ D′(G) and Pu ∈ C∞(G) imply that there exists v ∈ C∞(G) such

that u− v ∈ kerP .

Clearly, global hypoellipticity implies global hypoellipticity modulo kernel. Our main re-

sult here is the equivalence of the concepts of global hypoellipticity modulo kernel and global

solvability for constant coefficient vector fields.

Proposition 2.18. The operator L = X1 + cX2 is globally hypoelliptic modulo kerL if and

only if L is globally solvable.

Proof. ( =⇒ ) Suppose that L is not globally solvable. Then by Theorem 2.5, for everyM ∈ N,

choose [ξM ] ∈ Ĝ1 and [ηM ] ∈ Ĝ2 such that

0 < |λm(ξM) + cµr(ηM)| ≤ (〈ξM〉+ 〈ηM〉)−M ,

for some 1 ≤ m ≤ dξM and 1 ≤ r ≤ dηM . Using the same construction of the proof of Theorem

2.3, we find a u ∈ D′(G) \ C∞(G) such that Lu = f ∈ C∞(G). Notice that if u− v ∈ kerL,

for some v ∈ C∞(G), then

i(λm(ξ) + cµr(η)) ̂̂u− v(ξ, η)mnrs = 0,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη, which implies that

λm(ξ) + cµr(η) 6= 0 =⇒ ̂̂u(ξ, η)mnrs = ̂̂v(ξ, η)mnrs .

Since ̂̂u(ξM , ηM)mnrs = 1, we conclude that v /∈ C∞(G), so L is not globally hypoelliptic

modulo kerL.

( ⇐= ) Let u ∈ D′(G) such that Lu = f ∈ C∞(G). Notice that f ∈ K ∩ C∞(G) and by

Proposition 2.7 there exists v ∈ C∞(G) such that Lv = f . Therefore u− v ∈ kerL and then L

is globally hypoelliptic modulo kerL.
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Example 2.19. Let G = T1× S3. In Example 2.10 we saw that the operator L = ∂t +X is not

globally hypoelliptic but it is globally solvable. By Proposition 2.18, we conclude that even not

being globally hypoelliptic, the operator L is globally hypoelliptic modulo kernel.

2.4.2 W–global hypoellipticity

In the light of Proposition 2.16, our next notion of hypoellipticity is based on the reduction

of the domain of the operator.

Definition 2.20. LetW be a subset of D′(G). We say that an operator P : D′(G) → D′(G) is

W-globally hypoelliptic if the conditions u ∈ W and Pu ∈ C∞(G) imply that u ∈ C∞(G).

Observe that an operator P is always C∞(G)–globally hypoelliptic, and to say that P is

D′(G)-globally hypoelliptic means that P is globally hypoelliptic.

Example 2.21. Let L = X1 + cX2 and set

K := {u ∈ D′(G); ̂̂u(ξ, η)mnrs = 0,whenever λm(ξ) + cµr(η) = 0}.

If L is globally solvable, then L is K-globally hypoelliptic.

Indeed, by the characterization of the global solvability (Theorem 2.5), there existC, M > 0

such that

|λm(ξ) + cµr(η)| ≥ C(〈ξ〉+ 〈η〉)−M ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη, whenever λm(ξ) + cµr(η) 6= 0.

Let u ∈ K such that Lu = f ∈ C∞(G). We know that

̂̂f(ξ, η)mnrs = i(λm(ξ) + cµr(η)) ̂̂u(ξ, η)mnrs .

If λm(ξ) + cµr(η) = 0 then ̂̂u(ξ, η)mnrs = 0.

If λm(ξ) + cµr(η) 6= 0, we have

| ̂̂u(ξ, η)mnrs | =
1

|λm(ξ) + cµr(η)|
| ̂̂f(ξ, η)mnrs | ≤ C(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs |.

Therefore u ∈ C∞(G).

Proposition 2.22. If W1 ⊆ W2 and L is W2–globally hypoelliptic, then L is W1–globally

hypoelliptic.



Constant coefficient vector fields 57

Proof. Let u ∈ W1 such that Lu ∈ C∞(G). As W1 ⊆ W2, we have u ∈ W2 and since L is

W2–globally hypoelliptic, u ∈ C∞(G). Therefore L isW1–globally hypoelliptic.

Since we always have K ⊆ L(D′(G)), where L(D′(G)) denotes the image of L, we obtain

the following corollary.

Corollary 2.23. If L is K–globally hypoelliptic, then L is L(D′(G))–globally hypoelliptic.

Corollary 2.24. Suppose that L is globally solvable. If there exists k ∈ N such that Lku ∈

C∞(G), then Lu ∈ C∞(G).

Proof. Suppose that there exists k ∈ N such that Lku ∈ C∞(G). Since v = Lk−1u ∈ L(D′(G))

and Lv ∈ C∞(G), we have, by the L(D′(G))–global hypoellipticity of L, that v ∈ Lk−1u ∈

C∞(G). We can continue this process to conclude that Lu ∈ C∞(G).

If L is globally solvable, the previous corollary says that if Lu /∈ C∞(G), then Lku /∈

C∞(G) for all k ∈ N.

Let

M := {u ∈ D′(G);∀N ∈N,∃CN > 0; ‖ ̂̂u(ξ, η)‖HS ≤ CN(〈ξ〉+ 〈η〉)−N , ∀([ξ], [η])∈N}.

Notice that C∞(G) (M.

Theorem 2.25. If L is globally solvable, then L isM–globally hypoelliptic.

Proof. Let u ∈M such that Lu ∈ C∞(G). We know that

̂̂Lu(ξ, η)mnrs = i(λm(ξ) + cµr(η)) ̂̂u(ξ, η)mnrs ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. If ([ξ], [η]) /∈ N , then λm(ξ) + cµr(η) 6= 0

and ̂̂u(ξ, η)mnrs =
1

i(λm(ξ) + cµr(η))
̂̂Lu(ξ, η)mnrs

Proceeding similarly as in the proof of Theorem 2.3, it can be proved that for every N ∈ N,

there exists C ′N > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ C ′N(〈ξ〉+ 〈η〉)−N ,

for all ([ξ], [η]) /∈ N . Since u ∈ M, we can conclude that for every N ∈ N, there exists

KN > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ KN(〈ξ〉+ 〈η〉)−N ,

for all ([ξ], [η]) ∈ Ĝ1 × Ĝ2. Therefore u ∈ C∞(G).
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2.5 Low order perturbations

In view of the Greenfield-Wallach conjecture, a way to obtain example of globally hypoel-

liptic first order differential operators defined on compact Lie groups other than the torus is to

consider perturbations of vector fields by low order terms.

We start by considering the case where the perturbation is given by a constant. In the next

chapter we will deal with perturbations by smooth functions. This approach was inspired by the

reference [5] of A. Bergamasco. In both situations, perturbations by constant and functions, we

characterize the global hypoellipticity and the global solvability.

Let G be a compact Lie group, X ∈ g and q ∈ C. Define the operator

Lq : C∞(G)→ C∞(G) as:

Lqu := Xu+ qu, u ∈ C∞(G)

We can extend Lq to D′(G) as:

〈Lqu, ϕ〉 := −〈u,Xϕ〉+ 〈u, qϕ〉 = −〈u, L−qϕ〉, u ∈ D′(G), ϕ ∈ C∞(G). (2.13)

If Lqu = f ∈ C∞(G), the Fourier coefficient of f can be obtained as

f̂(ξ) = L̂qu(ξ) = X̂u(ξ) + q̂u(ξ) = σX(ξ)û(ξ) + qû(ξ),

for all [ξ] ∈ Ĝ. So

f̂(ξ)mn = iλm(ξ)û(ξ)mn + qû(ξ)mn = i(λm(ξ)− iq)û(ξ)mn,

for all [ξ] ∈ Ĝ, 1 ≤ m,n ≤ dξ.

From this we conclude that

f̂(ξ)mn = 0, whenever λm(ξ)− iq = 0.

In addition, if λm(ξ)− iq 6= 0, then

û(ξ)mn =
1

i(λm(ξ)− iq)
f̂(ξ)mn.

Thus, we obtain the following characterization for the global hypoellipticity and solvability

of Lq which is similar to the vector fields case and so its proof will be omitted.

Theorem 2.26. The operator Lq = X + q is globally hypoelliptic if and only if the following

conditions are satisfied:
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1. The set

N = {[ξ] ∈ Ĝ; λm(ξ)− iq = 0 for some 1 ≤ m ≤ dξ}

is finite.

2. ∃C, M > 0 such that

|λm(ξ)− iq| ≥ C〈ξ〉−M , (2.14)

for all [ξ] ∈ Ĝ, 1 ≤ m ≤ dξ whenever λm(ξ) + iq 6= 0.

Let Kq := {w ∈ D′(G); ŵ(ξ)mn = 0,whenever λm(ξ)− iq = 0}.

Definition 2.27. We say that Lq is globally solvable if Lq(D′(G)) = Kq.

Theorem 2.28. The operator Lq = X+q is globally solvable if and only if the condition (2.14)

is satisfied, that is, ∃C, M > 0 such that

|λm(ξ)− iq| ≥ C〈ξ〉−M ,

for all [ξ] ∈ Ĝ, 1 ≤ m ≤ dξ whenever λm(ξ) + iq 6= 0.

Corollary 2.29. If Lq is globally hypoelliptic, then Lq is globally solvable.

Recall the definition of global hypoellipticity modulo kernel given in Section 2.4. The proof

of the next result is similar to Proposition 2.18 and its proof will be omitted.

Proposition 2.30. The operator Lq is globally hypoelliptic modulo kerLq if and only if Lq is

globally solvable.

Example 2.31. G = T1 × S3

In Example 2.10 we concluded that the operator L = ∂t+
√

2X is not globally hypoelliptic,

but it is globally solvable, since
√

2 is an irrational non-Liouville number. Consider now the

operator

L = ∂t +
√

2X + i1
2
.

In this case we have

N =
{

(k, `) ∈ Z× 1
2
N0; k +

√
2m+ 1

2
= 0, for some − ` ≤ m ≤ `

}
= ∅.

Notice that ∣∣∣k +
√

2m+ 1
2

∣∣∣ = 1
2

∣∣∣(2k + 1) + 2
√

2m
∣∣∣ .
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In view of 2
√

2 be an irrational non-Liouville number, by Theorem 2.26 we conclude that

L is a globally hypoelliptic operator, which implies that L is also a globally solvable operator

(Corollary 2.29). Notice that for the operator

L = ∂t +
√

2X + i,

the set N remains having infinitely many elements. Therefore L is not globally hypoelliptic.

However, we have that L is globally solvable because
√

2 is an irrational non-Liouville number

and so satisfies (2.14).

We also obtained in Example 2.10 that the operator L = ∂t + αX is neither globally hy-

poelliptic nor globally solvable, where α =
[
101!, 102!, 103!, . . .

]
. Consider the perturbation

L = ∂t + αX + iα.

We have that

N =
{

(k, `) ∈ Z× 1
2
N0; k + αm+ α = 0, for some − ` ≤ m ≤ `

}
has infinitely many elements because (0, `) ∈ N , for every ` ∈ N. So L is not globally

hypoelliptic. Moreover, we have

|k + αm+ α| = |k + α(m+ 1)|.

Since α is an irrational Liouville number, we conclude by Theorem 2.28 that L is not globally

solvable. Hence, the perturbed operator continues not being neither global hypoelliptic nor

globally solvable. With the same argument, we can also conclude that the operator

L = ∂t + αX + i1
2

is neither globally hypoelliptic nor globally solvable.

Example 2.32. G = S3 × S3

Similarly to the T1 × S3 case, we will analyze now what happens to perturbations of the

operators that we have studied in Example 2.11. Notice that the operator

L = X1 +
√

2X2

is globally solvable but it is not globally hypoelliptic. Consider the perturbed operator

L1 = X1 +
√

2X2 + i1
2
.
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Differently to the previous example, this operator remains not being globally hypoelliptic be-

cause for κ ∈ 1
2
N0 \ N0 and ` ∈ N0, we have (κ, `) ∈ N . Notice that L1 continues being

globally solvable.

Consider now the operator

L2 = X1 +
√

2X2 + 1
4
i.

For this operator we haveN = ∅ and it satisfies the conditions of Theorem 2.26 because
√

2 is

an irrational non-Liouville number. Therefore L2 is globally hypoelliptic.
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Chapter 3

Variable coefficient vector fields - Real case

3.1 A class of vector fields with variable coefficients

LetG1 andG2 compact Lie groups, and setG = G1×G2. In this section we will characterize

the global hypoellipticity and the global solvability for operators in the form

Laq = X1 + a(x1)X2 + q(x1, x2),

where X1 ∈ g1, X2 ∈ g2, a ∈ C∞(G1) is a real-valued function, and q ∈ C∞(G). First, let us

consider the case where q ≡ 0.

3.1.1 Normal form

Let

La = X1 + a(x1)X2,

where X1 ∈ g1, X2 ∈ g2 and a ∈ C∞(G1) is a real-valued function. If Lau = f ∈ C∞(G),

taking the partial Fourier coefficients with respect to the second variable, we obtain

L̂au(x1, η)rs = X1û(x1, η)rs + iµr(η)a(x1)û(x1, η)rs = f̂(x1, η)rs,

for all [η] ∈ Ĝ1, 1 ≤ r, s ≤ dη. The idea now is to find ϕ( · , η)rs 6= 0 such that

v(x1, η)rs = ϕ(x1, η)rsû(x1, η)rs

satisfies

X1v(x1, η)rs + iµr(η)a0v(x1, η)rs = ϕ(x1, η)rsf̂(x1, η)rs := g(x1, η)rs,
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for all [η] ∈ Ĝ1, 1 ≤ r, s ≤ dη, for some a0 ∈ R. So

ϕ(x, η)rsf̂(x1, η)rs = X1(ϕ(x1, η)rsû(x1, η)rs) + iµr(η)a0ϕ(x1, η)rsû(x1, η)rs

= X1(ϕ(x1, η)rs)û(x1, η)rs + ϕ(x1, η)rs(X1û(x1, η)rs)

+ iµr(η)a0ϕ(x1, η)rsû(x1, η)rs

= X1(ϕ(x1, η)rs)û(x1, η)rs − iµr(η)(a(x1)− a0)ϕ(x1, η)rsû(x1, η)rs

+ ϕ(x1, η)rs
(
(X1û(x1, η)rs) + iµr(η)a(x1)û(x1, η)rs

)
= X1(ϕ(x1, η)rs)û(x1, η)rs + ϕ(x1, η)rsf̂(x1, η)rs

− iµr(η)(a(x1)− a0)ϕ(x1, η)rsû(x1, η)rs

Thus, if û(x1, η)rs 6= 0, we have

X1ϕ(x1, η)rs = iµr(η)(a(x1)− a0)ϕ(x1, η)rs (3.1)

Suppose that there exists A ∈ C∞(G1) such that

X1A(x1) = a(x1)− a0. (3.2)

We can assume that A is a real-valued smooth function. So

0 =

∫
G1

X1A(x1) dx1 =

∫
G1

(a(x1)− a0) dx1

Therefore a0 =

∫
G1

a(x1) dx1 and the equation (3.1) becomes

X1ϕ(x1, η)rs = iµr(η)(X1A)(x1)ϕ(x1, η)rs (3.3)

and by Lemma 3.15, the function

ϕ(x1, η)rs = eiµr(η)A(x1)

is a solution of (3.3).

Define the operator Ψa as

Ψau(x1, x2) :=
∑

[η]∈Ĝ2

dη

dη∑
r,s=1

eiµr(η)A(x1)û(x1, η)rs ηsr(x2). (3.4)

Remark 3.1. When G1 is the one-dimensional torus, the operator X1 = ∂t is globally solvable

and a−a0 belongs to the set of admissible functions, therefore the assumption over the existence

of such function A satisfying (3.2) is verified, for any a ∈ C∞(G1). However, for other compact

Lie groups, including higher-dimensional torus and the sphere S3, it is not difficult to construct

examples of a function a for which there is no A satisfying (3.2).



Variable coefficient vector fields - Real case 64

The next lemma is a technical result necessary to show that the operator Ψa is well-defined.

Lemma 3.2. LetG be a compact group, f ∈ C∞(G), and z ∈ C with |z| ≥ 1. Let {Y1, · · · , Yd}

a basis for g. For all β ∈ Nd
0, there exists Cβ > 0 such that

|∂βezf(x)| ≤ Cβ|z||β|e<(zf(x)). (3.5)

Proof. Let us proceed by induction on |β|.

For |β| = 0, we have

|∂βezf(x)| = |ezf(x)| = e<(zf(x)).

Suppose now that (3.5) holds for every γ ∈ Nd
0 with |γ| ≤ k and let β ∈ Nd

0 with |β| = k+1.

We can write β = γ + ej , for some j = 1, · · · , d and |γ| = k. So

|∂βezf(x)| = |∂γYjezf(x)| = |∂γ(zYjf(x)ezf(x))|

≤ |z|
∑

γ′+γ′′=γ

|∂γ′Yjf(x)| |∂γ′′ezf(x)|

= Cβ|z|βe<(zf(x))

Remark 3.3. We have a similar result for the case where |z| ≤ 1. In this case, the power of |z|

on the estimate (3.5) is equal to 1 for every β ∈ N0, i.e., for all β ∈ Nd
0 there exists Cβ such that

|∂βezf(x)| ≤ Cβ|z|eRe(zf(x)), ∀x ∈ G.

Proposition 3.4. The operator Ψa defined in (3.4) is an automorphism of C∞(G) and ofD′(G).

Proof. First of all, notice that Ψ−a is the inverse of Ψa, therefore we only need to prove that

Ψa(C
∞(G)) = C∞(G) and Ψa(D′(G)) = D′(G).

Let β ∈ N0 and u ∈ C∞(G). We will show that Ψau ∈ C∞(G). Notice that Ψ̂au(x1, η)rs =

eiµr(η)q(x1)û(x1, η)rs and µr(η)A(x1) ∈ R, for all [η] ∈ Ĝ2, 1 ≤ r ≤ dη and x1 ∈ G1. Using

(3.5) we obtain

|∂βΨ̂au(x1, η)rs| = |∂β(eiµr(η)A(x1)û(x1, η)rs)|

=

∣∣∣∣∣ ∑
β′+β′′=β

∂β
′
eiµr(η)A(x1)∂β

′′
û(x1, η)rs

∣∣∣∣∣
≤

∑
β′+β′′=β

∣∣∣∂β′eiµr(η)A(x1)
∣∣∣ ∣∣∣∂β′′û(x1, η)rs

∣∣∣
≤

∑
β′+β′′=β

Cβ′ |µr(η)||β′|
∣∣∣∂β′′û(x1, η)rs

∣∣∣
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Since u ∈ C∞(G) and |µr(η)| ≤ 〈η〉, it is easy to see that given N > 0, there exists CβN such

that

|∂βΨ̂au(x1, η)rs| ≤ CβN〈η〉−N .

Therefore Ψau ∈ C∞(G). The distribution case is analogous.

Proposition 3.5. Let a ∈ C∞(G1), a0 :=
∫
G1
a(x1) dx1, and consider the operator La0 =

X1 + a0X2. Assume that there exists A ∈ C∞(G1) such that X1A = a− a0. Then we have

La0 ◦Ψa = Ψa ◦ La

in both C∞(G) and in D′(G), where Ψa is given in (3.4).

Proof. Let us show that for any u ∈ C∞(G) we have

̂La0(Ψau)(x1, η)rs = Ψ̂a(Lau)(x1, η)rs,

for all x1 ∈ G1, [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη.

Indeed,

̂La0(Ψau)(x1, η)rs = X̂1Ψau(x1, η)rs + a0X̂2Ψau(x1, η)rs

= X1Ψ̂au(x1, η)rs + iµr(η)a0Ψ̂au(x1, η)rs

= X1(eiµr(η)A(x1)û(x1, η)rs) + iµr(η)a0e
iµr(η)A(x1)û(x1, η)rs

= (X1e
iµr(η)A(x1))û(x1, η)rs + eiµr(η)A(x1)(X1û(x1, η)rs)

+ iµr(η)a0e
iµr(η)A(x1)û(x1, η)rs

= iµr(η)(a(x1)− a0)eiµr(η)A(x1)û(x1, η)rs + eiµr(η)A(x1)(X1û(x1, η)rs)

+ iµr(η)a0e
iµr(η)A(x1)û(x1, η)rs

= eiµr(η)A(x1)(X1û(x1, η)rs + iµr(η)a(x1)û(x1, η)rs)

= eiµr(η)A(x1)L̂au(x1, η)rs

= Ψ̂a(Lau)(x1, η)rs

The same is true when u ∈ D′(G).

3.1.2 Global properties

Recall that the operator La0 is globally solvable if La0(D′(G)) = Ka0 , where

Ka0 := {w ∈ D′(G); λm(ξ) + a0µr(η) = 0, whenever ̂̂w (ξ, η)mnrs = 0}.
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We will say that La is globally solvable if La(D′(G)) = Ja, where

Ja := {v ∈ D′(G); Ψ−av ∈ Ka0}.

Proposition 3.6. The operator La is globally hypoelliptic (resp. globally hypoelliptic modulo

kerLa) if and only if La0 is globally hypoelliptic (resp. globally hypoelliptic modulo kerLa0).

Similarly, the operator La is globally solvable if and only if La0 is globally solvable.

Proposition 3.7. Assume that there exists A ∈ C∞(G) such that X1A = a − a0, where a0 =∫
G
a(x) dx. Then

1. La is globally hypoelliptic if and only if La0 is globally hypoelliptic;

2. La is globally hypoelliptic modulo kerLa if and only if La0 is globally hypoelliptic modulo

kerLq0;

3. La is globally solvable if and only if La0 is globally solvable.

Proof. 1. Suppose that La is globally hypoelliptic. If La0u = f ∈ C∞(G) for some u ∈ D′(G),

then Ψ−aLa0u = Ψ−af ∈ C∞(G). Since Ψ−a ◦La0 = La ◦Ψ−a, we have La(Ψ−au) ∈ C∞(G)

and by global hypoellipticity of La we have Ψ−au ∈ C∞(G), which implies that u ∈ C∞(G)

and then La0 is globally hypoelliptic.

Assume now that La0 is globally hypoelliptic. If Lau = f ∈ C∞(G) for some u ∈ D′(G),

we can write La(Ψ−aΨau) = f ∈ C∞(G). By the fact that La ◦ Ψ−a = Ψ−a ◦ La0 we obtain

Ψ−aLa0(Ψau) = f , that is, La0(Ψau) = Ψaf ∈ C∞(G). By global hypoellipticity of La0 we

have that Ψau ∈ C∞(G) and then u ∈ C∞(G).

2. Suppose that La is globally hypoelliptic modulo kerLa. If La0u = f ∈ C∞(G) for

some u ∈ D′(G), then Ψ−aLa0u = Ψ−af ∈ C∞(G). Since Ψ−a ◦ La0 = La ◦ Ψ−a, we have

La(Ψ−au) = Ψ−af ∈ C∞(G). By assumption, La is globally hypoelliptic modulo kerLa, so

there exists v ∈ C∞ such that Ψ−au− v ∈ kerLa, i.e.,

LaΨ−a(u−Ψav) = La(Ψ−au− v) = 0.

Hence, La0(u−Ψav) = 0. Since Ψav ∈ C∞(G) and u−Ψav ∈ kerLa0 , we conclude that La0

is globally hypoelliptic modulo kerLa0 . The other implication is analogous so it is omitted.

3. Assume that La is globally solvable and let f ∈ Ka0 . Let us show that there exists

u ∈ D′(G) such that La0u = f . We can write f = ΨaΨ−af , so Ψ−af ∈ Ja. Since La is
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globally solvable, there exists v ∈ D′(G) such that Lav = Ψ−af . we can write v = Ψ−aΨav

and then La(Ψ−aΨav) = Ψ−af . By Proposition 3.16, we have

Ψ−aLa0Ψav = La(Ψ−aΨav) = Ψ−af,

that is, La0Ψav = f .

Suppose now that La0 is globally solvable and let f ∈ Ja. By the definition of Ja, we have

Ψaf ∈ Ka0 and by the global solvability of La0 , there exists u ∈ D′(G) such that La0u = Ψaf ,

that is, Ψ−aLa0u = f . By Proposition 3.16, we get LaΨ−au = f .

Hence, the operator La inherits the following properties from the operator La0 that we have

proved in Chapter 2.

Corollary 3.8. If La is globally hypoelliptic, then La is globally solvable.

Proof. Suppose that La is globally hypoelliptic. By Proposition 3.7 the operator La0 is globally

hypoelliptic, so by Corollary 2.6, La0 is globally solvable. Finally, by Proposition 3.7, we

conclude that La is globally solvable.

Corollary 3.9. The operator La is globally hypoelliptic modulo kerLa if and only if La is

globally solvable.

Example 3.10. G = T2

For instance, for a(t) = sin(t)+
√

2, we have a0 =
√

2 andA(t) = −cos(t). TakeG2 = T1.

We know by Example 2.8 that the operator

La0 = ∂t +
√

2∂x

is globally hypoelliptic, because
√

2 is an irrational non-Liouville number. Hence,

La = ∂t + (sin(t) +
√

2)∂x

is globally hypoelliptic and then globally solvable.

Example 3.11. G = T1 × S3

Take now G2 = S3. By Example 2.10, we know that

La0 = ∂t +
√

2X
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is not globally hypoelliptic but it is globally solvable. Therefore

La = ∂t + (sin(t)−
√

2)X

is not globally hypoelliptic and it is globally solvable.

Example 3.12. G = S3 × S3

We can identify S3 with SU(2) and the Euler’s angle parametrization of SU(2) is given by

x(φ, θ, ψ) =

 cos
(
θ
2

)
ei(φ+ψ)/2 i sin

(
θ
2

)
ei(φ−ψ)/2

i sin
(
θ
2

)
e−i(φ−ψ)/2 cos

(
θ
2

)
e−i(φ+ψ)/2

 ∈ SU(2), (3.6)

where 0 ≤ φ < 2π, 0 ≤ θ ≤ π and −2π ≤ ψ < 2π (see Chapter 11 of [35]). The trace

function on SU(2) in Euler’s angles (see (3.6)) is given by

tr(x(φ, θ, ψ)) = 2 cos
(
θ
2

)
cos
(
φ+ψ

2

)
.

Consider the operator

L = X1 + a(x1)X2,

where X1 acts in the first variable, X2 acts in the second variable and a : S3 → R is expressed

in Euler’s angles by

a(x1(φ1, θ1, ψ1)) = − cos
(
θ1
2

)
sin
(
φ1+ψ1

2

)
+
√

2 (3.7)

The operator X1 in Euler’s angles is the operator ∂ψ1 and then we have

X1tr(x1) = a(x1)−
√

2.

By Proposition 3.7, we conclude thatL is not globally hypoelliptic but it is globally solvable,

because the operator L0 = X1 +
√

2X2 has this properties (see Example 2.32).

Remark 3.13. We had supposed that given a function a ∈ C∞(G1) there exists a function

A ∈ C∞(G1) and a0 ∈ R such that X1A = a − a0, that is, X1 is C∞–cohomology free on G1

(see Definition 2.13).

Conjecture 3.14 (Katok). If a closed, connected, orientable manifold M admits a C∞–coho-

mology free vector field X , then M is diffeomorphic to a torus and X is smoothly conjugate to

a Diophantine vector field.
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In [22], G. Forni has proved that the Katok’s conjecture is equivalent to the Greenfield’s

and Wallach’s conjecture, mentioned in the previous chapter (see Conjecture 2.12). In view of

the proof of this conjecture in dimensions 2 and 3, and its validity in compact Lie groups, it is

necessary to add in the hypothesis the existence of such A satisfying X1A = a− a0. Otherwise,

the above results would be valid only for the case where G1 is a torus.

3.2 Perturbations of vector fields by functions

In this section we are concerned with the operator Lq := X + q, with q ∈ C∞(G). The idea

is to establish a connection between the global hypoellipticity and the global solvability of Lq

and Lq0 = X + q0, where q0 is the average of q in G.

In [5], Bergamasco proved that the operator

Lq = ∂t + a∂x + q,

where a ∈ R is an irrational non-Liouville number and q ∈ C∞(T2), is globally hypoelliptic

if and only if it is the operator Lq0 = ∂t + a∂x + q0, where q0 =
∫
T2 q(t, x) dxdt. The key

to make this connection is the fact that Lq ◦ e−Q = e−Q ◦ Lq0 , where Q ∈ C∞(T2) satisfies

(∂t + a∂x)Q = q − q0. The existence of such Q is guaranteed by the global hypoellipticity of

the operator ∂t + a∂x.

For the study of the operator Lq = X + q, with q ∈ C∞(G), we can not assume the global

hypoellipticity of X in view of the Greenfield-Wallach’s conjecture. Hence, we will assume as

hypothesis that there exists Q ∈ C∞(G)(G) such that

XQ = q − q0,

where q0 =
∫
G
q(x) dx.

Lemma 3.15. For any ϕ ∈ C∞(G) we have

Xeϕ = (Xϕ)eϕ.

Proof. Let x ∈ G, then

(Xeϕ)(x) = X
∞∑
k=0

ϕ(x)k

k!
=
∞∑
k=0

Xϕ(x)k

k!
=
∞∑
k=1

kϕ(x)k−1(Xϕ)(x)

k!
= (Xϕ)(x)

∞∑
k=1

ϕ(x)k−1

(k − 1)!

= (Xϕ)(x)eϕ(x)
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Let Lq : C∞(G)→ C∞(G) defined by

Lqu = Xu(x) + qu, u ∈ C∞(G).

We can extend Lq to D′(G) as in (2.13).

Proposition 3.16. Assume that there exists Q ∈ C∞(G) such that XQ = q − q0, where q0 =∫
G
q(x) dx. Then

1. Lq ◦ e−Q = e−Q ◦ Lq0 , in both C∞(G) and in D′(G);

2. Lq is globally hypoelliptic if and only if Lq0 is globally hypoelliptic;

3. Lq is globally hypoelliptic modulo kerLq if and only if Lq0 is globally hypoelliptic modulo

kerLq0 .

Proof. 1. Let u ∈ C∞(G). Then

(Lq ◦ e−Q)u = Lq(e
−Qu)

= X(e−Qu) + qe−Qu = (Xe−Q)u+ e−QXu+ qe−Qu

= (−XQ)e−Qu+ e−QXu+ qe−Qu

= −(q − q0)e−Qu+ e−QXu+ qe−Qu

= e−Q(Xu+ q0u)

= (e−Q ◦ Lq0)u

The same is true when we have u ∈ D′(G).

The proof of 2. and 3. is similar to what was done in Proposition 3.7.

Now assume that Lqu = f ∈ D′(G) for some u ∈ D′(G). We may write u = e−Q(eQu), so

Lq(e
−Q(eQu)) = f . By Proposition 3.16, we have e−QLq0e

Qu = f , that is,

Lq0e
Qu = eQf.

This implies that eQf ∈ Kq0 .

Definition 3.17. We say that the operator Lq is globally solvable if:

1. there is Q such that XQ = q − q0, where q0 =
∫
G
q(x) dx; and

2. Lq(D′(G)) = Jq, where

Jq := {v ∈ D′(G); eQv ∈ Kq0}.
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Proposition 3.18. Lq is globally solvable if and only if Lq0 is globally solvable.

The proof is omitted because it is analogous to the proof of Proposition 3.7.

Corollary 3.19. If Lq is globally hypoelliptic then Lq is globally solvable.

Corollary 3.20. Lq is globally hypoelliptic modulo kerLq if and only if Lq is globally solvable.

Example 3.21. G = T2

Consider the operator

Lq = ∂t + ∂x + q(t, x),

where q(t, x) = sin(t+x). ForQ(t, x) = −1
2

cos(t+x) we have (∂t+∂x)Q(t, x) = q(t, x)−q0,

where q0 = 0. Since Lq0 = ∂t+∂x is not globally hypoelliptic, we conclude by Proposition 3.16

that Lq is not globally hypoelliptic. On the other hand, the operator Lq0 is globally solvable,

then Lq is globally solvable.

For q(t, x) = sin(t + x) + 1, we have q0 = 1 and by Theorem 2.26 we have that Lq0 is

globally hypoelliptic and then Lq is globally hypoelliptic, which implies that Lq is also globally

solvable.

Example 3.22. G = T1 × S3

Recall from Example 3.12 that the trace function on SU(2) in Euler’s angles (see (3.6)) is

given by

tr(x(φ, θ, ψ)) = 2 cos
(
θ
2

)
cos
(
φ+ψ

2

)
.

Consider the operator

Lq = ∂t +
√

2X + q(t, x),

where X is the same vector field from Example 2.10 and

q(t, x) = − sin(t)tr(x) +
√

2 cos(t)h(x) + i1
2
,

where h : S3 → C is expressed in Euler’s angles by

h(x(φ, θ, ψ)) = − cos
(
θ
2

)
sin
(
φ+ψ

2

)
. (3.8)

We have that X in Euler’s angles is the operator ∂ψ, so

Xtr(x) = h(x).
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Let Q(t, x) = cos(t)tr(x). Notice that

(∂t +
√

2X)Q(t, x) = q(t, x)− i1
2
.

By Example 2.31, the operator Lq0 = ∂t+
√

2X+ 1
2

is not globally hypoelliptic but it is globally

solvable. By Proposition 3.16 we conclude that

Lq = ∂t +
√

2X − sin(t)tr(x) +
√

2 cos(t)h(x) + i1
2

is not globally hypoelliptic, but it is globally solvable.

Example 3.23. G = S3 × S3

Consider

L = X1 +
√

2X2 + q(x1, x2),

where X1 acts in the first variable, X2 acts in the second variable, and q : S3 → C is expressed

in Euler’s angles by

q(x1, x2) = p1(x1) +
√

2 p2(x2) + 1
2
i,

where p1 and p2 are the projections of SU(2) ' S3 given in Euler’s angle by

p1(x(φ, θ, ψ)) = cos
(
θ
2

)
ei(φ+ψ)/2 and p2(x(φ, θ, ψ)) = i sin

(
θ
2

)
ei(φ−ψ)/2,

with 0 ≤ φ < 2π, 0 ≤ θ ≤ π, −2π ≤ ψ < 2π. Notice that the function Q(x1, x2) =

2i(p2(x2)− p1(x1)) satisfies

(X1 +
√

2X2)Q(x1, x2) = q(x1, x2)− 1
2
i.

By Proposition 3.16 and 3.18, we conclude that L is not globally hypoelliptic but it is glob-

ally solvable, because L0 = X1 +
√

2X2 + 1
2
i has this properties (see Example 2.32). Similarly,

we conclude that

L = X1 +
√

2X2 + p1(x1) +
√

2 p2(x2) + 1
4
i

is globally hypoelliptic because L0 = X1 +
√

2X2 + 1
4
i is globally hypoelliptic (see Example

2.32).
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3.3 The general case

We can now combine what was made in Sections 3.1 and 3.2 to study the operator

Laq = X1 + a(x1)X2 + q(x1, x2),

whereX1 ∈ g1, X2 ∈ g2, a ∈ C∞(G1) is a real-valued function, and q ∈ C∞(G). Furthermore,

we will assume that there exists Q ∈ C∞(G) satisfying

LaQ = (X1 + a(x1)X2)Q = q − q0.

By Proposition 3.16 we have

Laq ◦ e−Q = e−Q ◦ Laq0 ,

where Laq0 = X1 + a(x1)X2 + q0.

It follows from Proposition 3.5 that

La0q0 ◦Ψa = Ψa ◦ Laq0 ,

where La0q0 = X1 + a0X2 + q0. Thus,

Laq ◦ e−Q ◦Ψa = e−Q ◦ Laq0 ◦Ψa = e−Q ◦Ψa ◦ La0q0 .

We say that Laq is globally solvable if Laq(D′(G)) = Jaq, where

Jaq := {v ∈ D′(G); Ψ−ae
Qv ∈ Ka0q0}

and

Ka0q0 := {w ∈ D′(G); ̂̂w (ξ, η)mnrs = 0 whenever λm(ξ) + a0µr(η)− iq0 = 0}.

The next results are consequences of what was done previously.

Proposition 3.24. The operator Laq is globally hypoelliptic (resp. globally hypoelliptic mod-

ulo kerLaq) if and only if La0q0 is globally hypoelliptic (resp. globally hypoelliptic modulo

kerLa0q0). Similarly, the operator Laq is globally solvable if and only if La0q0 is globally solv-

able.

Corollary 3.25. If Laq is globally hypoelliptic, then La0q0 is globally solvable.
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Corollary 3.26. The operator Laq is hypoelliptic modulo kerLaq if and only if La0q0 is globally

solvable.

Example 3.27. G = T1 × S3

Let G = T1 × S3 and X ∈ s3 as in the Example 2.10. Let a(t) = sin(t) +
√

2 and

q(t, x) = cos(t) + (sin(t) +
√

2)h(x) + 1, with h as in Example 3.2. Here, a0 =
√

2 and q0 = 1.

Notice that the function Q(t, x) = sin(t) + tr(x) satisfies (∂t + a(t)X)Q(t, x) = q(t, x). By

Theorem 2.26 the operator

La0q0 = ∂t +
√

2X + 1

is globally hypoelliptic (see Example 2.10) and then the operator

Laq = ∂t + (sin(t) +
√

2)X + (cos(t) + (sin(t) +
√

2)h(x) + 1)

is globally hypoelliptic, which implies that Laq is globally solvable.

For q(t, x) = cos(t) + (sin(t) +
√

2)h(x) + i, the operator

La0q0 = ∂t +
√

2X + i

is not globally hypoelliptic (see Example 2.31) and then the operator

Laq = ∂t + (sin(t) +
√

2)X + (cos(t) + (sin(t) +
√

2)h(x) + i)

is not globally hypoelliptic. However, since
√

2 is an irrational non-Liouville number, the

operator La0q0 is globally solvable, which implies that Laq is globally solvable.

Example 3.28. G = S3 × S3

In this example we will analyze a perturbation of the operator studied in Example 3.12.

Consider

L = X1 + a(x1)X2 + q(x1, x2),

where X1 acts in the first variable, X2 acts in the second variable, a : S3 → R expressed in

Euler’s angles by

a(x1(φ1, θ1, ψ1)) = − cos
(
θ1
2

)
sin
(
φ1+ψ1

2

)
+
√

2,

and q : S3 × S3 → C is given by

q(x1, x2) = p1(x1) + a(x1) p2(x2) + 1
2
i,
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where p1 and p2 are the projections of SU(2) ' S3 (see Example 3.23). Notice thatQ(x1, x2) =

2i(p2(x2)− p1(x1)) satisfies

(X1 + a(x1)X2)Q(x1, x2) = q(x1, x2)− 1
2
i.

By Proposition 3.24, we can extract the global properties of Laq from the operator

La0q0 = X1 +
√

2X2 + 1
2
i,

that we already have studied in Example 3.23. Therefore, the operator

L = X1 + a(x1)X2 + p1(x1) + a(x1) p2(x2) + 1
2
i

is not globally hypoelliptic but it is globally solvable.

Analogously, with a slight change in the definition of q, we conclude that

L = X1 + a(x1)X2 + p1(x1) + a(x1) p2(x2) + 1
4
i

is globally hypoelliptic, since the operator L = X1 +
√

2X2 + 1
4
i is globally hypoelliptic (see

Example 2.32).
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Chapter 4

Variable coefficient vector fields - Complex

case

Let G be a compact Lie group and consider the operator Lq : D′(T1 × G) → D′(T1 × G)

defined by

Lq := ∂t + c(t)X + q,

where X ∈ g, c ∈ C∞(T1), c(t) = a(t) + ib(t), and q ∈ C. In this chapter, we will study the

necessary and sufficient conditions for the global hypoellipticity of this operator. Here we are

assuming that the first group is the one-dimensional torus because the study of the operator Lq

leads us to solve a system of ordinary differential equations, which we only can solve in T1, for

now. The case where either c is a constant function or b ≡ 0 was completely characterized in

Chapters 2 and 3. Recall that for each [η] ∈ Ĝ, we can choose a representative η ∈ Rep(G)

such that

σX(η)rs = iµr(η)δrs, 1 ≤ r, s ≤ dη,

where dη = dim η, and µr(η) ∈ R for all [η] ∈ Ĝ. In Chapter 3, we have seen that when b ≡ 0,

the global hypoellipticity of Lq is strictly related to the global hypoellipticity of the operator

Lq0 = ∂t + a0X + q

because these two operator are conjugated by the automorphism

Ψau(t, x) :=
∑
[η]∈Ĝ

dη

dη∑
r,s=1

eiµr(η)A(t)û(t, η)rs ηsr(x)

defined in (3.4). If we wanted to do the same in the case where b 6≡ 0 we would not have the

growth control of the term e−µr(η)B(t) that appears in the definition of Ψc Therefore Ψc is not an
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automorphism. However, we will prove in Proposition 4.2 that the global hypoellipticity of Lq0

is a necessary condition for the global hypoellipticity of Lq and at the end of the chapter we give

an example where this is not a sufficient condition. First, observe that by the automorphism Ψa

we may assume that a(t) is a constant function, so

Lq = ∂t + (a0 + ib(t))X + q.

4.1 Global hypoellipticity

Consider the equation Lqu = f ∈ C∞(T1 ×G). Taking the partial Fourier coefficient with

respect to the second variable we obtain

f̂(t, η) = L̂qu(t, η) = ∂tû(t, η) + c(t)σX(η)û(t, η) + qû(t, η),

that is,

f̂(t, η)rs = L̂qu(t, η)rs = ∂tû(t, η)rs + i(µr(η)c(t)− iq)û(t, η)rs, (4.1)

for 1 ≤ r, s ≤ dη.

Let

C(t) =

∫ t

0

c(τ)dτ − c0t, where c0 =
1

2π

∫ 2π

0

c(τ)dτ.

Multiplying by eiµr(η)C(t), we obtain

∂tû(t, η)rse
iµr(η)C(t) + i(µr(η)c(t)− iq)û(t, η)rse

iµr(η)C(t) = f̂(t, η)rse
iµr(η)C(t)

Then

∂t
[
û(t, η)rse

iµr(η)C(t)
]
+i(µr(η)c0 − iq)û(t, η)rse

iµr(η)C(t) = f̂(t, η)rse
iµr(η)C(t),

that is, for each η ∈ Ĝ and 1 ≤ r, s ≤ dη, we have that û(t, η)rse
iµr(η)C(t) is a solution of

∂tv(t, η)rs + i(µr(η)c0 − iq)v(t, η)rs = g(t, η)rs, (4.2)

where g(t, η)rs = f̂(t, η)rse
iµr(η)C(t). It follows from Lemma B.1, from Appendix B, that (4.2)

has a unique solution given by

v(t, η)rs =
1

1− e−2πi(µr(η)c0−iq)

∫ 2π

0

e−i(µr(η)c0−iq)τg(t− τ, η)rsdτ,

whenever µr(η)c0 − iq /∈ Z, or equivalently by

v(t, η)rs =
1

e2πi(µr(η)c0−iq) − 1

∫ 2π

0

ei(µr(η)c0−iq)τg(t+ τ, η)rsdτ.
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Therefore, we obtain

û(t, η)rs =
1

1− e−2πi(µr(η)c0−iq)

∫ 2π

0

e−qτe−iµr(η)(c0τ−C(t−τ)+C(t))f̂(t− τ, η)rsdτ, (4.3)

or equivalently,

û(t, η)rs =
1

e2πi(µr(η)c0−iq) − 1

∫ 2π

0

eqτe−iµr(η)(−c0τ−C(t+τ)+C(t))f̂(t+ τ, η)rsdτ. (4.4)

In the remainder of this chapter we will need to control the behavior of the numerical se-

quence that precedes the integral in the expression above. For this end we will use the following

technical lemma, the proof of which can be found in Appendix B.

Lemma 4.1. Are equivalent:

1. There exist C,M > 0 such that

|k + c0µr(η)− iq| ≥ C(|k|+ 〈η〉)−M ,

for all k ∈ Z, [η] ∈ Ĝ, 1 ≤ r ≤ dη, whenever k + c0µr(η)− iq 6= 0.

2. There exist C,M > 0 such that∣∣1− e±2πi(c0µr(η)−iq)∣∣ ≥ C〈η〉−M , (4.5)

for all [η] ∈ Ĝ, 1 ≤ r ≤ dη, whenever c0µr(η)− iq /∈ Z.

4.1.1 Necessary conditions

Proposition 4.2. If Lq is globally hypoelliptic, then Lq0 is globally hypoelliptic.

Proof. Assume that Lq0 is not globally hypoelliptic. By Theorem 2.26 we have two cases to

consider:

(i) The set

N = {(k, [η]) ∈ Z× Ĝ; k + c0µr(η)− iq = 0, for some 1 ≤ r ≤ dη}

has infinitely many elements or;

(ii) for all M > 0, there exists kM ∈ Z and [ηM ] ∈ Ĝ satisfying

0 < |kM + c0µr(ηM)− iq| ≤ (|k|+ 〈ηM〉)−M ,

for some 1 ≤ r ≤ dηM .
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Case (i): Assume that there exists a sequence [ηk] ∈ Ĝ such that c0µr(ηk) − iq ∈ Z, for some

1 ≤ r ≤ dηk . for all k ∈ N. We may assume without loss of generality that r = 1 for all

[ηk] ∈ Ĝ. For each k ∈ N, let tk ∈ [0, 2π] such that

mk := max
t∈[0,2π]

∫ t

0

(Re (q)− µ1(ηk)b(s)) ds =

∫ tk

0

(Re (q)− µ1(ηk)b(s)) ds.

Set

û(t, η)rs =

 emk exp
{
−
∫ t

0
(iµ1(ηk)c(s) + q) ds

}
, if [η] = [ηk] and r = s = 1,

0, otherwise.

Since c0µ1(ηk)− iq ∈ Z, for all k ∈ N, the sequence of functions {û(t, η)rs} is well-defined on

T1. Notice that

|û(t, ηk)11| =
∣∣∣∣emk exp

{
−
∫ t

0

(Re (q)− µ1(ηk)b(s)) ds

}∣∣∣∣ ≤ 1,

by the definition of mk. By Theorem A.5, we have that u ∈ D′(T1 ×G). Moreover, we have

|û(tk, ηk)11| = 1,

for all k ∈ N. By Theorem A.4 we conclude u /∈ C∞(T1 × G). Since each element of the

sequence {û(t, η)rs} satisfies

∂t{û(t, η)rs}+ i(µr(η)c(t)− iq){û(t, η)rs} = 0,

for all [η] ∈ Ĝ, 1 ≤ r, s ≤ dη, we conclude that Lqu = 0, which implies that Lq is not globally

hypoelliptic.

Case (ii): By the equivalence given in Lemma 4.1, we can construct a sequence [ηk] satisfying

for all k ∈ N

0 < |1− e−2πi(c0µr(ηk)−iq)| < 〈ηk〉−k, (4.6)

for some 1 ≤ r ≤ dηk . We may assume r = 1 for convenience of notation and c0µ1(ηk)−iq /∈ Z

for all k ∈ Z, because N is finite.

For each k ∈ N, choose tk ∈ [0, 2π] such that

max
t∈[0,2π]

∫ t

0

(µ1(ηk)b(s)− Re (q)) ds =

∫ tk

0

(µ1(ηk)b(s)− Re (q)) ds.

Notice that with this choice we have∫ t

tk

(µ1(ηk)b(s)− Re (q)) ds ≤ 0, for all t ∈ [0, 2π]. (4.7)
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By the compactness of the torus, we may assume, by passing to a subsequence, that there exists

t0 ∈ [0, 2π] such that tk → t0, as k →∞.

Let ϕ ∈ C∞(T1) be a real-valued smooth function satisfying supp(ϕ) ⊆ I , 0 ≤ ϕ(t) ≤ 1,

and
∫ 2π

t
ϕ(s) ds > 0, where I is a closed interval in (0, 2π) such that t0 /∈ I .

Consider

f̂(t, η)rs =

 ck exp
{
−i
∫ t
tk

(µ1(ηk)c(w)− iq) dw
}
ϕ(t), if [η] = [ηk], and r = s = 1,

0, otherwise,

for t ∈ [0, 2π], where ck := 1− e−2πi(c0µ1(ηk)−iq). Since supp(ϕ) ⊆ I , the sequence {f̂(t, η)rs}
is well-defined on T1. Let us show that {f̂(t, η)rs} defines a smooth function on T1 × G. For

α ∈ N we have

∣∣∣∂αt f̂(t, ηk)11

∣∣∣= ∣∣∣1− e−2πi(c0µ1(ηk)−iq)
∣∣∣
∣∣∣∣∣∣
∑
β≤α

(
α

β

)
∂βt exp

{
−i
∫ t

tk

(µ1(ηk)c(w)− iq) dw
}
∂α−βϕ(t)

∣∣∣∣∣∣ .
By Faà di Bruno’s formula we have

∂βt exp

{
−i
∫ t

tk

(µ1(ηk)c(w)− iq) dw
}

=
∑

γ∈∆(β)

β!

γ!
exp

{
−i
∫ t

tk

(µ1(ηk)c(w)− iq) dw
}

×
β∏
j=1

(
−i∂jt

∫ t
tk

(µ1(ηk)c(w)− iq) dw
j!

)γj

,

where ∆(β) =

{
γ ∈ Nβ

0 ;
β∑
j=1

jγj = β

}
.

Since for all k ∈ N we have |µ1(ηk)| ≤ 〈ηk〉 and
∫ t
tk

(Re (q) − µ1(ηk)b(w)) dw ≤ 0, for all

t ∈ [0, 2π], we obtain

∂βt exp

{
−i
∫ t

tk

(µ1(ηk)c(w)− iq) dw
}
≤ Cβ〈ηk〉β,

for some Cβ > 0. By (4.6) we obtain∣∣∣∂αt f̂(t, ηk)11

∣∣∣ ≤ Cα〈ηk〉α−k,

for some Cα > 0. By Theorem A.4 we conclude that f ∈ C∞(T1 ×G).

Let us construct now a distribution u ∈ D′(T1 ×G) \C∞(T1 ×G) satisfying Lqu = f . By

(4.3), set

û(t, ηk)11 =
1

1− e−2πi(c0µ1(ηk)−iq)

∫ 2π

0

exp

{
−i
∫ t

t−τ
(c(w)µ1(ηk)− iq) dw

}
f̂(t− τ, ηk)11 dτ
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and û(t, η)rs = 0 for all the other cases. For t− τ ≥ 0 we have

û(t, ηk)11 =

∫ 2π

0
exp

{
−i
∫ t

t−τ
(c(w)µ1(ηk)− iq) dw − i

∫ t−τ

tk

(µ1(ηk)c(w)− iq) dw
}
ϕ(t− τ) dτ

= exp

{
−i
∫ t

tk

(c(w)µ1(ηk)− iq) dw
}∫ 2π

0
ϕ(t− τ) dτ. (4.8)

We have 0 ≤ ϕ(t) ≤ 1, so by (4.7) we obtain

|û(t, ηk)11| ≤ 2π exp

{∫ t

tk

(µ1(ηk)b(w)− Re (q)) dw

}
≤ 2π.

For t − τ < 0 we need to use the 2π–periodic extension of f on de definition of û(t, ηk)11.

Hence,

û(t, ηk)11 =

∫ 2π

0

exp

{
−i
∫ t

t−τ
(c(w)µ1(ηk)− iq) dw − i

∫ t−τ+2π

tk

(µ1(ηk)c(w)− iq) dw
}

× ϕ(t− τ + 2π) dτ

= exp

{
−i
∫ t

tk

(c(w)µ1(ηk)− iq) dw + 2πi(c0µ1(ηk)− iq)
}∫ 2π

0

ϕ(t− τ + 2π) dτ.

(4.9)

Similar to the previous case, we have

|û(t, ηk)11| ≤ 2π exp {2π(Re (q)− b0µ1(ηk))} ≤ 4π,

for sufficiently large k, where the last inequality comes from the fact that by (4.6) we have

|e−2πi(c0µ1(ηk)−iq)| → 1, when k →∞. By Theorem A.5, we have u ∈ D′(T1 ×G). Notice that

if t0 > sup I , then tk > sup I , for k sufficiently large, which implies that tk − τ ≥ 0, for every

τ ∈ supp(ϕ). By (4.8) we obtain

|û(tk, ηk)11| =
∫ 2π

0

ϕ(tk − τ) dτ = ‖ϕ‖L1(T1) > 0.

On the other hand, if t0 < inf I , we have for k sufficiently large. that tk < τ , for every

τ ∈ supp(ϕ). By (4.9) we have

|û(tk, ηk)11| = exp {2π(Re (q)− b0µ1(ηk))}
∫ 2π

0

ϕ(tk − τ + 2π) dτ > 1
2
‖ϕ‖L1(T1) > 0.

By Theorem A.4 we conclude that u /∈ C∞(T1×G). Therefore Lq is not globally hypoelliptic.

For the next theorem we will assume an additional hypothesis about the eigenvalues of the

symbol of X . Precisely:
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Hypothesis A: Assume that there exist 0 < C < 1 and a sequence {[ηj]}j∈N in Ĝ such that for

all j ∈ N we have

C〈ηj〉 ≤ |µr(ηj)|,

for some 1 ≤ r ≤ dηj . We may assume without loss of generality that r = dηj and µdηj (ηj) > 0,

for all j ∈ N. Hence, µdηj (ηj)
j→∞−→ ∞.

Remark 4.3. When G = T1 and X = ∂x, we have µ1(k) = k and 〈k〉 =
√

1 + k2, for all

k ∈ Z. Thus
1
2
〈k〉 ≤ |k| ≤ 〈k〉, ∀k ∈ Z \ {0}.

For G = S3 and X the usual vector field that we are studying, we have µ`(`) = ` and

〈`〉 =
√

1 + `(`+ 1), for all ` ∈ 1
2
N0. Therefore

1
2
〈`〉 ≤ ` ≤ 〈`〉, ∀` ∈ 1

2
N.

Theorem 4.4. Assume that b 6≡ 0 and that Hypothesis A holds. If Lq = ∂t + (a0 + ib(t))X + q

is globally hypoelliptic then b does not change sign.

Proof. Suppose that b change sign and b0 > 0. Consider

G(t, τ) =

∫ t+τ

t

(a0 + ib(w)) dw = a0τ + i

∫ t+τ

t

b(w)dw, t, τ ∈ [0, 2π]

and define

B = min
0≤t,τ≤2π

Im (G(t, τ)) = Im (G(t0, τ0)) =

∫ t0+τ0

t0

b(w) dw.

Since b change sign, we have B < 0. Moreover, we can consider t0, τ0 ∈ (0, 2π) and b(0) 6= 0.

It can be shown that b(t0 + τ0) = 0, which implies that t0 + τ0 ∈ (0, 2π).

Let ϕ ∈ C∞(T1) such that supp(ϕ) ⊂ [t0 + τ0 − δ, t0 + τ0 + δ] ⊂ (0, t0) with ϕ(t) ≡ 1 for

t ∈ [t0 + τ0 − δ/2, t0 + τ0 + δ/2] and 0 ≤ ϕ(t) ≤ 1.

Let us construct a distribution u ∈ D′(T1×G)\C∞(T1×G) such that Lqu = f ∈ C∞(T1×

G). From Hypothesis A, there exist 0 < C < 1 and a sequence {[ηj]}j∈N in Ĝ such that

C〈ηj〉 ≤ µdηj (ηj), (4.10)

for all j ∈ N. By Proposition 4.2 we have that Lq0 is globally hypoelliptic. In particular, the set

N = {[η] ∈ Ĝ;µr(η)c0 − iq ∈ Z, for some 1 ≤ r ≤ dη}
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is finite and we may assume that [ηj] /∈ Z, for all j ∈ N. Define

f̂(t, η)rs=

 c̃ke
Bµr(ηj)ϕ(t)e−iµr(ηj)a0(t−t0), if [η] = [ηj], for some j ∈ N, and r = s = dηj ,

0, otherwise ,

where c̃k := e2πi(µr(ηj)c0−iq) − 1. In order to prove that the sequence {f̂(t, η)rs} defines a

smooth function in T1×G, it is enough to consider the representations [ηj] and the components

r = s = dηj .

Notice that

|∂αt f̂(t, ηj)dηj dηj |=

∣∣∣∣∣(e2πi(µdηj
(ηj)c0−iq) − 1)e

Bµdηj
(ηj)
∑
β≤α

(
α

β

)
∂βt e

−iµdηj (ηj)a0(t−t0)
∂α−βt ϕ(t)

∣∣∣∣∣
≤
∣∣∣e2πi(µdηj

(ηj)c0−iq) − 1
∣∣∣ eBµdηj (ηj)

∑
β≤α

(
α

β

) ∣∣∣∂βt e−iµdηj (ηj)a0(t−t0)
∣∣∣∣∣∣∂α−βt ϕ(t)

∣∣∣.
Observe that∣∣∣e2πi(µdηj

(ηj)c0−iq) − 1
∣∣∣ ≤ ∣∣∣e2πi(µdηj

(ηj)c0−iq)
∣∣∣+ 1 ≤ e

2π(−µdηj (ηj)b0+Re(q))
+ 1 ≤ C,

for some C > 0, because b0 ≥ 0 and µdηj (ηj)→∞. Notice that∣∣∣∂βt e−iµdηj (ηj)a0(t−t0)
∣∣∣ =

∣∣∣(−iµdηj (ηj)a0)βe
−iµdηj (ηj)a0(t−t0)

∣∣∣ ≤ Cβ〈ηj〉β.

Moreover, since B < 0, we obtain from (4.10)

e
Bµdηj

(ηj) ≤ eCB〈ηj〉.

Hence,

|∂αt f̂(t, ηj)dηj dηj | ≤ Cαe
CB〈ηj〉〈ηj〉α.

Since B < 0, for any N > 0 there exists CαN such that

|∂αt f̂(t, η)dηdη | ≤ CαN〈η〉−N .

By Theorem A.4, we conclude that f ∈ C∞(T1 ×G). If Lqu = f , then

f̂(t, η)rs = L̂qu(t, η)rs = ∂tû(t, η)rs + iµr(η)(a0 + ib(t)− iq)û(t, η)rs, (4.11)

for 1 ≤ r, s,≤ dη. Since µdηj (ηj)c0 − iq /∈ Z, by (4.4) we obtain

û(t, ηj)dηj dηj =
1

e
2πi(µdηj

(ηj)c0−iq) − 1

∫ 2π

0

eqτe
iµdηj

(ηj)G(t,τ)
f̂(t+ τ, ηj)rs dτ

= e
−iµdηj (ηj)a0(t−t0)

∫ 2π

0

eqτe
µdηj

(ηj)(B−Im(G(t,τ)))
ϕ(t+ τ) dτ.
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In all the other cases set û(t, η)rs = 0. First, let us show that the sequence {û(t, η)rs} defines a

distribution u ∈ D′(T1 ×G), where

u =
∑
[η]∈Ĝ

dη

dη∑
r,s=1

û(t, η)rsηsr.

In order to apply the Theorem A.5, it is enough to consider the case where [η] = [ηj] for

some j ∈ N and r = s = dηj because the other cases are well-controlled.

Let ψ ∈ C∞(T1), then

|(û(t, ηj)rs, ψ)| =
∣∣∣∣∫ 2π

0

e
−iµdηj (ηj)a0(t−t0)

∫ 2π

0

eqτe
µdηj

(ηj)(B−Im(G(t,τ)))
ϕ(t+ τ) dτ ψ(t) dt

∣∣∣∣
≤
∫ 2π

0

∫ 2π

0

eRe(q)τe
µdηj

(ηj)(B−Im(G(t,τ)))|ϕ(t+ τ)| |ψ(t)| dτdt

≤ (2π)2‖ϕ‖∞‖ψ‖∞

≤ Kp1(ψ)〈ηj〉.

Notice that here we have used the fact that µdηj (ηj)(B − Im (G(t, τ))) ≤ 1. Therefore u ∈

D′(T1 ×G). Consider the function

θ(τ) = B − Im (G(t0, τ)) = B −
∫ t0+τ

t0

b(w) dw.

We may consider δ small enough in the properties of ϕ such that either cos(Im (q)) or

sin(Im (q)) does not change sign on (τ0 + δ, τ0 + δ). Assume without loss of generality that

sin(Im (q)) ≥ 0 on (τ0 + δ, τ0 + δ). Thus

|û(t0, ηj)dηj dηj | =
∣∣∣∣∫ 2π

0

eqτe
µdηj

(ηj)θ(τ)
ϕ(t0 + τ) dτ

∣∣∣∣
≥
∫ τ0+δ

τ0−δ
eRe(q)τ sin(Im (q) τ)e

µdηj
(ηj)θ(τ)

ϕ(t0 + τ) dτ

≥
∫ τ0+δ/2

τ0−δ/2
eRe(q)τ sin(Im (q) τ)e

µdηj
(ηj)θ(τ)

dτ

≥ K

∫ τ0+δ/2

τ0−δ/2
e〈ηj〉θ(τ) dτ,

where we use the fact that θ(τ) ≤ 0, for all τ ∈ [0, 2π], µdηj (ηj) ≤ 〈ηj〉 for all [ηj] ∈ Ĝ, and

there exists K > 0 such that eRe(q)τ sin(Im (q) τ) ≥ K on [τ0 − δ/2, τ0 + δ/2].

Let us analyze the behavior of the function

J(ηj) =

∫ τ0+δ/2

τ0−δ/2
e〈ηj〉θ(τ) dτ
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when 〈ηj〉 → ∞. We have

θ(τ0) = B −
∫ t0+τ0

t0

b(w) dw = B −B = 0

and

θ′(τ0) = −b(t0 + τ0) = 0.

Thus by Taylor’s formula, we have

θ(τ0 + h) = θ(τ0) + θ′(τ0)h+
1

2
θ′′(τ0 + θ(h))h2 =

1

2
θ′′(τ0 + θ(h))h2,

for h ∈ (τ0 − δ/2, τ0 + δ/2) and θ(h) ∈ [τ0 − δ/2, τ0 + δ/2]. Let

M := sup
τ0−δ≤y≤τ0+δ

∣∣∣∣θ′′(y)

2

∣∣∣∣ .
If M = 0 then θ ≡ 0 in [τ0 − δ/2, τ0 + δ/2]. Thus∫ τ0+δ/2

τ0−δ/2
e〈ηj〉θ(τ) dτ =

∫ τ0+δ/2

τ0−δ/2
e0 dτ = δ ≥ C1√

〈ηj〉
,

for some C1 > 0.

If M > 0, then

−θ(τ0 + h) = −1

2
θ′′(τ0 + θ(h))h2 ≤Mh2.

So

〈ηj〉θ(τ0 + h) ≥ −M〈ηj〉h2.

Thereby ∫ τ0+δ/2

τ0−δ/2
e〈ηj〉θ(τ) dτ =

∫ δ/2

−δ/2
e〈ηj〉θ(τ0+h) dh ≥

∫ δ/2

−δ/2
e−M〈ηj〉h

2

dh ≥ C2√
〈ηj〉

,

for some C2 > 0. Considering C = max{KC1, KC2}, we have

|û(t0, ηj)dηj dηj | ≥
C√
〈ηj〉

,

for all [ηj] ∈ Ĝ such that oX(ηj) = µdηj (ηj). Therefore u /∈ C∞(T1 ×G).

The case where b0 < 0 is analogous to the previous one, but needs some adaptions. Here

we take

B̃ := max
0≤t,τ≤2π

Im (H(t, τ)) = Im (H(t1, τ1)) =

∫ t1

t1−τ1
b(w) dw.

Since b change sign, then B̃ > 0. For r = s = dηj , define

f̂(t, ηj)rs = (1− e−2πi(µr(ηj)c0−iq))e−B̃µr(ηj)ϕ̃(t)e−iµr(ηj)a0(t−t1),
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where ϕ̃ ∈ C∞(T1) satisfies similar properties of ϕ. One can shows that f ∈ C∞(T1 ×G) and

there exists u ∈ D′(T1 ×G)\C∞(T1 ×G) such that Lqu = f . For this, define for r = s = dηj

û(t, ηj)rs = e−iµr(ηj)a0(t−t1)

∫ 2π

0

eµr(ηj)(Im(H(t,τ))−B̃)ϕ̃(t− τ) dτ.

The proof that u ∈ D′(T1 × G)\C∞(T1 × G) is similar to the previous case and it will be

omitted.

4.1.2 Sufficient conditions

In view of Proposition 4.2, from now we will assume that Lq0 is global hypoelliptic. By

Theorem 2.26, this assumption implies that the set

N = {(k, [η]) ∈ Z× Ĝ; k + c0µr(η)− iq = 0, for some 1 ≤ r ≤ dη} (4.12)

is finite and there exist C,M > 0 such that

|k + c0µr(η)− iq| ≥ C(|k|+ 〈η〉)−M , (4.13)

for all k ∈ Z, [η] ∈ Ĝ, 1 ≤ r ≤ dη, whenever k + c0µr(η)− iq 6= 0.

Theorem 4.5. Assume that Lq0 is globally hypoelliptic and b 6≡ 0. If b does not change sign

then Lq is globally hypoelliptic.

Proof. Assume that b(t) ≥ 0 for all t ∈ T1. By hypothesis, b0 6= 0, where c0 = a0 + ib0.

Notice that the global hypoellipticity of Lq0 implies that µr(η)c0 − iq ∈ Z for only finitely

many representations. So there is no loss of generality to assume that µr(η)c0 − iq /∈ Z.

Let f ∈ C∞(T1 × G) such that Lqu = f , for some u ∈ D′(T1 × G). Let us show that

u ∈ C∞(T1 ×G).

Define

H(τ, t) = c0τ − C(t− τ) + C(t).

For µr(η) < 0, consider the solution (4.3):

û(t, η)rs =
1

1− e−2πi(µr(η)c0−iq)

∫ 2π

0

e−qτe−iµr(η)H(τ,t)f̂(t− τ, η)rsdτ (4.14)

and for µr(η) ≥ 0, consider the solution (4.4):

û(t, η)rs =
1

e2πi(µr(η)c0−iq) − 1

∫ 2π

0

eqτe−iµr(η)H(−τ,t)f̂(t+ τ, η)rsdτ. (4.15)
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Notice that

H(τ, t) = c0τ − C(t− τ) + C(t)

= c0τ −
∫ t−τ

0

c(w)dw + (t− τ)c0 +

∫ t

0

c(w)dw − tc0

=

∫ t

t−τ
c(w)dw

So, using the fact that b(t) ≥ 0, for all t ∈ T1, we obtain

Im (H(τ, t)) = Im

(∫ t

t−τ
c(w)dw

)
=

∫ t

t−τ
b(w)dw ≥ 0. (4.16)

Im (H(−τ, t)) = Im

(∫ t

t+τ

c(w)dw

)
=

∫ t

t+τ

b(w)dw ≤ 0. (4.17)

Notice that there exist K > 0 such that

∣∣e±qτ ∣∣ ≤ K,

because 0 ≤ τ ≤ 2π. Let α ∈ N0 and µr(η)c0 − iq /∈ Z. If µr(η) < 0, by (4.14) we have

∣∣∂αt û(t, η)rs∣∣ = ∣∣∣∣ 1

1− e−2πi(µr(η)c0−iq)

∫ 2π

0
∂αt
[
e−qτe−iµr(η)H(τ,t)f̂(t− τ, η)rs

]
dτ

∣∣∣∣
≤
∣∣∣∣ 1

1− e−2πi(µr(η)c0−iq)

∣∣∣∣ ∫ 2π

0
|e−qτ |

α∑
β=0

(
α

β

) ∣∣∣∂βt e−iµr(η)H(τ,t)
∣∣∣ ∣∣∣∂α−βt f̂(t− τ, η)rs

∣∣∣ dτ.
By the assumption of the global hypoellipticity of Lq0 , we obtain from Lemma 4.1 constants

C,M > 0 satisfying

|1− e−2πi(µr(η)c0−iq)|−1 ≤ C〈η〉M , (4.18)

for all [η] ∈ Ĝ, 1 ≤ r ≤ dη, whenever c0µr(η)− iq /∈ Z. By Faà di Bruno’s Formula, we have

∂βt e
−iµr(η)H(t,t) =

∑
γ∈∆(β)

β!

γ!
(−iµr(η))|γ|e−iµr(η)H(τ,t)

β∏
j=1

(
∂jtH(τ, t)

j!

)γj

,

where ∆(β) =

{
γ ∈ Nβ

0 ;
β∑
j=1

jγj = β

}
. Hence,

∣∣∣∂βt e−iµr(η)H(t,t)
∣∣∣ ≤ ∑

γ∈∆(β)

β!

γ!
|µr(η)||γ|eµr(η) Im(H(τ,t))

β∏
j=1

∣∣∣∣∣∂jtH(τ, t)

j!

∣∣∣∣∣
γj

.

Notice that by (1.9) we have

|µr(η)||γ| ≤ 〈η〉|γ| ≤ 〈η〉β,
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for all [η] ∈ Ĝ, 1 ≤ r ≤ dη, and γ ∈ ∆(β). Moreover, by (4.16) we have

eµr(η) Im(H(τ,t)) ≤ 1.

Thus, ∣∣∣∂βt e−iµr(η)H(t,t)
∣∣∣ ≤ 〈η〉β ∑

γ∈∆(β)

β!

γ!

β∏
j=1

∣∣∣∣∣∂jtH(τ, t)

j!

∣∣∣∣∣
γj

.

By the continuity of the function H and the compactness of T1, for all β ∈ N0 there exists

Cβ > 0 such that ∑
γ∈∆(β)

β!

γ!

β∏
j=1

∣∣∣∣∣∂jtH(τ, t)

j!

∣∣∣∣∣
γj

≤ Cβ,

for all 0 ≤ t, τ ≤ 2π.

Let N > 0. Since f ∈ C∞(T1×G), by Theorem A.4 for every β ≤ α there exists CβN > 0

such that

|∂α−βt f̂(t, η)rs| ≤ CβN〈η〉−(N+β+M),

for all t ∈ T1, with M as in (4.18). Therefore,

∣∣∂αt û(t, η)rs∣∣ ≤ ∣∣∣∣ 1

1− e−2πi(µr(η)c0−iq)

∣∣∣∣ ∫ 2π

0
|e−qτ |

α∑
β=0

(
α

β

) ∣∣∣∂βt e−iµr(η)H(τ,t)
∣∣∣ ∣∣∣∂α−βt f̂(t− τ, η)rs

∣∣∣ dτ.
≤ KC〈η〉M

∫ 2π

0

α∑
β=0

(
α

β

)
Cβ〈η〉βCβN 〈η〉−(N+β+M) dτ

≤ CαN 〈η〉−N .

We can obtain the same type of estimate when µr(η) ≥ 0. In this case, it is enough to consider

the expression (4.15) to take the derivatives. We can adjust CαN , if necessary, to obtain∣∣∂αt û(t, η)rs
∣∣ ≤ CαN〈η〉−N ,

for every [η] ∈ Ĝ, 1 ≤ r, s ≤ dη. By Theorem A.4 we conclude that u ∈ C∞(T1 × G). The

case b(t) ≤ 0, for all t ∈ T1, is totally analogue, just use (4.14) for µr(η) ≥ 0 and (4.15) for

µr(η) < 0.

We can summarize the results obtained in this chapter as follows:

Theorem 4.6. Let G be a compact Lie group and consider the operator Lq : D′(T1 × G) →

D′(T1 ×G) defined as

Lq := ∂t + c(t)X + q,

where X ∈ g, c ∈ C∞(T1), and q ∈ C. Assume that
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a) b 6≡ 0;

b) Lq0 := ∂t + c0X + q is globally hypoelliptic, where c0 is the average of c;

c) there exist 0 < C < 1 and a sequence {[ηj]}j∈N in Ĝ such that for all j ∈ N we have

C〈ηj〉 ≤ |µr(ηj)|,

for some 1 ≤ r ≤ dηj .

Then Lq is globally hypoelliptic if and only if b does not change sign.

Example 4.7. Let G be a compact Lie group and q ∈ i(R \ Z). The operator

Lq := ∂t + (eit + i)X + q

is globally hypoelliptic. Indeed, we have Im (eit + i) = sin(t) + 1 6≡ 0 and the operator

Lq0 = ∂t + iX + q is globally hypoelliptic by Theorem 2.26 because in this case we have

N = {[η] ∈ Ĝ; iµr(η)− iq ∈ Z} = ∅,

and

|k + iµr(η)− iq| ≥ |k − iq| ≥ C,

for some C > 0, for all k ∈ Z, [η] ∈ Ĝ, 1 ≤ r ≤ dη. Since Im (eit + i) = sin(t) + 1 does not

change sign, by Theorem 4.5 we conclude that Lq is globally hypoelliptic.

Example 4.8. Let G = S3 and X ∈ s3 a normalized vector field on S3. Let q ∈ i(R \ Z), and

consider the operator

Lq := ∂t + (2eit + i)X + q.

Notice that Im (2eit + i) = 2 sin(t) + 1 6≡ 0 and the operator Lq0 = ∂t + iX + q is globally

hypoelliptic (see previous example). Moreover, we have seen in Remark 4.3 that condition c)

from Theorem 4.6 holds. Since Im (2eit + i) = 2 sin(t) + 1 changes sign, we conclude that Lq

is not globally hypoelliptic.
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Part II

Komatsu classes case
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Chapter 5

Constant coefficient vector fields

In Part I we have studied global properties for a class of operators defined in smooth func-

tions. The next step is to extend these results for other classes of functions. For instance,

in [1], [2], [3], [4], [8], [25] it was consider the Gevrey classes of functions.

Definition 5.1. Let G be a compact Lie group and s ≥ 1. The Gevrey–Roumieu class γs(G) is

the space of functions f ∈ C∞(G) for which there exist constants h > 0 and C > 0 such that

‖∂αf‖L2(G) ≤ Ch|α||α|!s, α ∈ Nd
0.

We refer [11] for a detail study of these spaces on compact Lie groups. Notice that when

s = 1 we obtain the space of analytic functions on G. These spaces are well-defined on G

because the compact Lie group G is an analytic manifold.

The Gevrey classes γs(G) is an example of a Komatsu class when we consider the sequence

Mk = k!s (see Section 1.2) , so we have decided to extend the results from Part I to Komatsu

classes.

5.1 Global properties in Komatsu classes of Roumieu type

In this section we will study global hypoellipticity of the operator

L = X1 + cX2

on Komatsu Classes of Roumieu type.

If we restrict the operator L = X1 + cX2 to the Komatsu class of Roumieu type Γ{Mk}(G)

we obtain an endomorphism, that is, L : Γ{Mk}(G) → Γ{Mk}(G). In this way, we can extend



Constant coefficient vector fields 92

the operator L to u ∈ Γ′{Mk}(G) as

〈Lu, ϕ〉 := −〈u, Lϕ〉, ∀ϕ ∈ Γ{Mk}(G).

Definition 5.2. Let G be a compact Lie group. We say that an operator P : Γ′{Mk}(G) →

Γ′{Mk}(G) is globally Γ{Mk}-hypoelliptic if the conditions u ∈ Γ′{Mk}(G) and Pu ∈ Γ{Mk}(G)

imply that u ∈ Γ{Mk}(G).

Theorem 5.3. The operator L = X1 + cX2 is globally Γ{Mk}−hypoelliptic if and only the

following conditions are satisfied:

1. The set

N = {([ξ], [η]) ∈ Ĝ1 × Ĝ2; λm(ξ) + cµr(η) = 0, for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη}

is finite.

2. ∀B > 0,∃KB > 0 such that

|λm(ξ) + cµr(η)| ≥ KB exp{−M(B(〈ξ〉+ 〈η〉))}, (5.1)

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη whenever λm(ξ) + cµr(η) 6= 0.

Proof. ( ⇐= ) Suppose Lu = f ∈ Γ{Mk}(G) for some u ∈ Γ{Mk}(G). Since N is finite, it is

enough to study the behavior of û(ξ, η)mnrs outside of N . If ([ξ], [η]) /∈ N , by (2.3) we have

̂̂u(ξ, η)mnrs = −i(λm(ξ) + cµr(η))−1 ̂̂f(ξ, η)mnrs ,

for all 1 ≤ m ≤ dξ and 1 ≤ r ≤ dη. Thus

| ̂̂u(ξ, η)mnrs | = |λm(ξ) + cµr(η)|−1| ̂̂f(ξ, η)mnrs |

≤ CN exp{M(N(〈ξ〉+ 〈η〉))}| ̂̂f(ξ, η)mnrs |

Since f ∈ Γ{Mk}(G), by (1.40) there exist constants C,N ′ > 0 such that

| ̂̂f(ξ, η)mnrs | ≤ C exp{−M(N ′(〈ξ〉+ 〈η〉))}.

Hence

| ̂̂u(ξ, η)mnrs | ≤ CN exp{M(N(〈ξ〉+ 〈η〉))} exp{−M(N ′(〈ξ〉+ 〈η〉))}.



Constant coefficient vector fields 93

From (1.14), for N = N ′

H
, we obtain

exp{−M(N ′(〈ξ〉+ 〈η〉))} ≤ A exp{−2M(N(〈ξ〉+ 〈η〉))}.

Thus

| ̂̂u(ξ, η)mnrs | ≤ C exp{−M(N(〈ξ〉+ 〈η〉))},

Therefore u ∈ Γ{Mk}(G).

( =⇒ ) Let us prove the result by contradiction. If (1) were not satisfied, by Lemma 2.2,

there would be u ∈ D′(G)\C∞(G), which implies that u ∈ Γ′{Mk}(G) \ Γ{Mk}(G), such that

Lu = 0, contradicting the hypothesis of global Γ{Mk}-hypoellipticity of L. So, let us assume

that 2. is not satisfied, then there exists B > 0 such that for all K ∈ N there exist [ξK ] ∈ Ĝ1

and [ηK ] ∈ Ĝ2 satisfying

0 < |λm(ξK) + cµr(ηK)| < 1
K

exp{−M(N(〈ξK〉+ 〈ηK〉))}, (5.2)

for some 1 ≤ m ≤ dξK and 1 ≤ r ≤ dηK . We can suppose that ([ξK ], [ηK ]) /∈ N and that

〈ξj〉+ 〈ηj〉 ≤ 〈ξ`〉+ 〈η`〉 when j ≤ `.

Let K ∈ N and m̃ and r̃ such that (5.2) holds. Define

̂̂f(ξK , ηK)mnrs =

 (λm(ξK) + cµr(ηK))(〈ξK〉+ 〈ηK〉), if mn = m̃1, rs = r̃1

0, otherwise.

Let C > 0 be obtained from (1.36) satisfying

(〈ξK〉+ 〈ηK〉) exp
{
−1

2
M(N(〈ξK〉+ 〈ηK〉))

}
< C,

for all K ∈ N. Hence

| ̂̂f(ξK , ηK)m̃1r̃1| = |λm̃(ξK) + cµr̃(ηK)|(〈ξK〉+ 〈ηK〉)

≤ 1

K
exp {−M(N(〈ξK〉+ 〈ηK〉))} (〈ξK〉+ 〈ηK〉)

≤ C exp{−M(N(〈ξK〉+ 〈ηK〉))} exp{1
2
M(N(〈ξK〉+ 〈ηK〉))}

≤ C exp{−M(Ñ(〈ξK〉+ 〈ηK〉))},

where Ñ = N
H

. Thus f ∈ Γ{Mk}(G).

By (2.3) and (2.2), if Lu = f for some u ∈ Γ′{Mk}(G), we have

̂̂u(ξK , ηK)mnrs =

 −i(〈ξK〉+ 〈ηK〉), if mn = m̃1, rs = r̃1

0, otherwise.
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In particular, ∣∣∣ ̂̂u(ξK , ηK)m̃1r̃1

∣∣∣ = 〈ξK〉+ 〈ηK〉, (5.3)

for all K ∈ N. Thus

| ̂̂u(ξ, η)mnrs | ≤ 〈ξ〉+ 〈η〉,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη. Therefore u ∈ D′(G) and then

u ∈ Γ′{Mk}(G). By (5.3) u /∈ C∞(G). Consequently u /∈ Γ{Mk}(G), which contradicts the fact

that L is globally Γ{Mk}-hypoelliptic.

Corollary 5.4. If L is globally hypoelliptic, then L is globally Γ{Mk}-hypoelliptic.

Proof. By Theorem 2.3, if L is globally hypoelliptic, the setN is finite and there exist C,N ′ >

0 such that

|λm(ξ) + cµr(η)| ≥ C(〈ξ〉+ 〈η〉)−N ′ ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη, whenever λm(ξ) + cµr(η) 6= 0.

By (1.36), for every N > 0, there exits CN > 0 such that

(〈ξ〉+ 〈η〉)N ′ exp{−M(N(〈ξ〉+ 〈η〉))} ≤ CN .

Thus,

|λm(ξ) + cµr(η)| ≥ CN exp{−M(N(〈ξ〉+ 〈η〉)),

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη, whenever λm(ξ) + cµr(η) 6= 0. By

Theorem 5.3 the operator L is globally Γ{Mk}-hypoelliptic.

For the case where Mk = k!, we obtain the class of analytic functions on G and we have

M(r) ' r. Hence, we have the following characterization for the global analytic hypoellipticity

of the operator L:

Theorem 5.5. The operator L = X1 + cX2 is globally analytic hypoelliptic if and only the

following conditions are satisfied:

1. The set

N = {([ξ], [η]) ∈ Ĝ1 × Ĝ2; λm(ξ) + cµr(η) = 0, for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη}

is finite.
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2. ∀B > 0,∃KB > 0 such that

|λm(ξ) + cµr(η)| ≥ KB exp{−B(〈ξ〉+ 〈η〉))}, (5.4)

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη whenever λm(ξ) + cµr(η) 6= 0.

Now, to define global solvability for the operator L in the sense of Komatsu classes, observe

that given an ultradifferentiable function (or ultradistribution) f defined on G, if u ∈ D′(G) is

a solution of Lu = f , we obtain from (2.2) that

λm(ξ) + cµr(η) = 0 =⇒ ̂̂f(ξ, η)mnrs = 0.

Therefore, let us consider the following set

K := {f ∈ Γ′{Mk}(G); ̂̂f(ξ, η)mnrs = 0 whenever λm(ξ) + cµr(η) = 0}.

Clearly there are no u ∈ Γ′{Mk}(G) satisfying Lu = f when f /∈ K.

Definition 5.6. We say that the operator L is globally Γ′{Mk}–solvable if L(Γ′{Mk}(G)) = K.

Notice that L(Γ′{Mk}(G)) ⊆ K and the next result give us the condition to obtain the other

inclusion.

Theorem 5.7. The operator L = X1 + cX2 is globally Γ′{Mk}(G)-solvable if and only if (5.1)

holds, that is, for all N > 0 there exists CN > 0 such that

|λm(ξ) + cµr(η)| ≥ CN exp{−M(N(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη whenever λm(ξ)+cµr(η) 6= 0. Moreover, if

L is globally Γ′{Mk}(G)-solvable, for any admissible ultradifferentiable function f ∈ Γ{Mk}(G),

there exists u ∈ Γ{Mk}(G) such that Lu = f .

Proof. (⇐= ) For each f ∈ K define

̂̂u(ξ, η)mnrs =

 0, if λm(ξ) + cµr(η) = 0,

−i(λm(ξ) + cµr(η))−1 ̂̂f(ξ, η)mnrs , otherwise.
(5.5)

Let us show that { ̂̂u(ξ, η)mnrs} is the sequence of Fourier coefficient of an ultradistribution

u ∈ Γ′{Mk}(G). If λm(ξ) + cµr(η) 6= 0, by (5.1) we have

| ̂̂u(ξ, η)mnrs | = |λm(ξ) + cµr(η)|−1| ̂̂f(ξ, η)mnrs |

≤CN exp {M(N(〈ξ〉+ 〈η〉))}| ̂̂f(ξ, η)mnrs |
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Using the fact that f ∈ Γ′{Mk}(G), we conclude that for all N > 0 and N ′ > 0, there exist

CNN ′ > 0 such that

| ̂̂u(ξ, η)mnrs | ≤ CNN ′ exp {M(N(〈ξ〉+ 〈η〉))} exp {M(N ′(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη.

Let D > 0. Choose N = N ′ = D
H

. Using (1.14) we obtain

| ̂̂u(ξ, η)mnrs | ≤ CD exp
{

2M
(
D
H

(〈ξ〉+ 〈η〉)
)}

≤ CD exp {M(D(〈ξ〉+ 〈η〉))}.

Therefore u ∈ Γ′{Mk}(G) and Lu = f .

( =⇒ ) Suppose that is not true, then there exists N > 0 such that for all K ∈ N there exist

[ξK ] ∈ Ĝ1 and [ηK ] ∈ Ĝ2 satisfying

0 < |λm̃(ξK) + cµr̃(ηK)| ≤ 1

K
exp{−M(N(〈ξK〉+ 〈ηK〉))}, (5.6)

for some 1 ≤ m̃ ≤ dξK and 1 ≤ r̃ ≤ dξK . We can assume that 〈ξj〉 + 〈ηj〉 ≤ 〈ξ`〉 + 〈η`〉 when

j ≤ `. Consider f ∈ K defined by

̂̂f(ξ, η)mnrs =

 1, if ([ξ], [η]) = ([ξj], [ηj]) for some j ∈ N and (5.6) is satisfied,

0, otherwise.

Suppose that there exits u ∈ Γ′{Mk}(G) such that Lu = f . In this way, its Fourier coefficients

must satisfy

i(λm(ξ) + cµr(η)) ̂̂u(ξ, η)mnrs = ̂̂f(ξ, η)mnrs .

So

| ̂̂u(ξK , ηK)m̃1r̃1| = |λm̃(ξK) + cµr̃(ηK)|−1|| ̂̂f(ξK , ηK)m̃1r̃1|

≥ K exp{M(N(〈ξK〉+ 〈ηK〉))},

which, by Proposition 1.41, implies that u /∈ Γ′{Mk}(G). Therefore L is not globally solvable.

Let us now prove the last part of the theorem. Let f ∈ K ∩ Γ{Mk}(G) and define u as in

(5.5). Since L is globally Γ′{Mk}–solvable, it holds (5.1) and then

| ̂̂u(ξ, η)mnrs | ≤ CN exp {M(N(〈ξ〉+ 〈η〉))}| ̂̂f(ξ, η)mnrs |,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. By (1.40), there exist C,N ′ > 0 such that

| ̂̂f (ξ,η)mnrs | ≤ C exp{−M(N ′(〈ξ〉+ 〈η〉))}.
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By (1.14), we have for N = N ′

H
that

| ̂̂u(ξ, η)mnrs | ≤ C exp
{
M
(
N ′

H
(〈ξ〉+ 〈η〉)

)}
exp{−M(N ′(〈ξ〉+ 〈η〉))}

≤ C exp
{
M
(
N ′

H
(〈ξ〉+ 〈η〉)

)}
C exp

{
−2M

(
N ′

H
(〈ξ〉+ 〈η〉)

)}
≤ C exp

{
−M

(
N ′

H
(〈ξ〉+ 〈η〉)

)}
for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. Therefore Lu = f and u ∈ Γ{Mk}(G).

As in the smooth case we obtain the following corollary in Komatsu classes:

Corollary 5.8. If L is globally Γ{Mk}-hypoelliptic, then L is globally Γ′{Mk}-solvable.

With the same proof of Corollary 5.4 we obtain the following class of globally Γ′{Mk}–

solvable operators:

Corollary 5.9. If L is globally C∞-solvable, then L is globally Γ′{Mk}-solvable.

5.2 Global properties in Komatsu classes of Beurling type

Analogously to the Roumieu type case, restricting the operator L = X1 + cX2 to the Ko-

matsu class of Beurling type Γ(Mk)(G) we obtain an endomorphism, that is,

L : Γ(Mk)(G)→ Γ(Mk)(G).

In this way, we can extend the operator L to u ∈ Γ′(Mk)(G) as

〈Lu, ϕ〉 := −〈u, Lϕ〉, ∀ϕ ∈ Γ(Mk)(G).

Definition 5.10. Let G be a compact Lie group. We say that P : Γ′(Mk)(G)→ Γ′(Mk)(G) is

globally Γ(Mk)-hypoelliptic if the conditions u ∈ Γ′(Mk)(G) and Pu ∈ Γ(Mk)(G) imply that

u ∈ Γ(Mk)(G).

Theorem 5.11. The operator L = X1 + cX2 is globally Γ(Mk)-hypoelliptic on G1 × G2 if and

only if the following conditions are satisfied:

1. The set

N = {([ξ], [η]) ∈ Ĝ1 × Ĝ2; λm(ξ) + cµr(η) = 0, for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη}

is finite.
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2. ∃B > 0, K > 0 such that

|λm(ξ) + cµr(η)| ≥ K exp{−M(B(〈ξ〉+ 〈η〉))}, (5.7)

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη whenever λm(ξ) + cµr(η) 6= 0.

Proof. ( ⇐= ) Suppose Lu = f ∈ Γ(Mk)(G) for some u ∈ Γ′(Mk)(G). Since N is finite, it is

enough to study the behaviour of û(ξ, η)mnrs outside of N . If ([ξ], [η]) /∈ N , then

̂̂u(ξ, η)mnrs = −i(λm(ξ) + cµr(η)−1 ̂̂f(ξ, η)mnrs ,

for all 1 ≤ m ≤ dξ and 1 ≤ r ≤ dη. Thus

| ̂̂u(ξ, η)mnrs | = |λm(ξ) + cµr(η)|−1| ̂̂f(ξ, η)mnrs |

≤ C exp{M(N(〈ξ〉+ 〈η〉))}| ̂̂f(ξ, η)mnrs |

Since f ∈ Γ(Mk)(G), for every N ′ > 0, there exists CN ′ > 0 such that

‖ ̂̂f(ξ, η)‖HS ≤ CN ′ exp{−M(N ′(〈ξ〉+ 〈η〉))}.

Hence

| ̂̂u(ξ, η)mnrs | ≤ CN ′ exp{M(N(〈ξ〉+ 〈η〉))} exp{−M(N ′(〈ξ〉+ 〈η〉))}.

Fix D > 0. If N ≤ D, then

exp{M(N(〈ξ〉+ 〈η〉))} ≤ exp{M(D(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, because M is a non-decreasing function, as well the exponential. So

| ̂̂u(ξ, η)mnrs | ≤ CN ′ exp{M(D(〈ξ〉+ 〈η〉))} exp{−M(N ′(〈ξ〉+ 〈η〉))}.

Choose N ′ = DH . By (1.14) we have

exp{−M(DH(〈ξ〉+ 〈η〉))} ≤ A exp{−2M(D(〈ξ〉+ 〈η〉))}.

Thus

| ̂̂u(ξ, η)mnrs | ≤ CD exp{M(D(〈ξ〉+ 〈η〉))} exp{−M(DH(〈ξ〉+ 〈η〉))}

≤ CD exp{M(D(〈ξ〉+ 〈η〉))} exp{−2M(D(〈ξ〉+ 〈η〉))}

≤ CD exp{−M(D(〈ξ〉+ 〈η〉))}.
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If N > D, choose N ′ = NH . Again by (1.14),

exp{−M(NH(〈ξ〉+ 〈η〉))} ≤ A exp{−2M(N(〈ξ〉+ 〈η〉))}.

So

| ̂̂u(ξ, η)mnrs | ≤ C exp{M(N(〈ξ〉+ 〈η〉))} exp{−M(NH(〈ξ〉+ 〈η〉))}

≤ C exp{M(N(〈ξ〉+ 〈η〉))} exp{−2M(N(〈ξ〉+ 〈η〉))}

≤ C exp{−M(N(〈ξ〉+ 〈η〉))}

≤ C exp{−M(D(〈ξ〉+ 〈η〉))}.

Hence, for every D > 0, there exists CD > 0 such that

| ̂̂u(ξ, η)mnrs | ≤ CD exp{−M(D(〈ξ〉+ 〈η〉)),

for all ([ξ], [η]) /∈ N . Therefore u ∈ Γ(Mk)(G).

( =⇒ ) Let us prove the result by contradiction. If (1) were not satisfied, by Lemma 2.2,

there would be u ∈ D′(G)\C∞(G), which implies that u ∈ Γ′{Mk}(G) \ Γ(Mk)(G), such that

Lu = 0, contradicting the hypothesis of global Γ(Mk)-hypoellipticity of L. So, let us assume

that (2) is not satisfied, then for every K ∈ N, we can choose a [ξK ] ∈ Ĝ1 and a [ηK ] ∈ Ĝ2 such

that

0 < |λm̃(ξK) + cµr̃(ηK)| ≤ exp{−M(K(〈ξK〉+ 〈ηK〉))}, (5.8)

for some 1 ≤ m̃ ≤ dξK and 1 ≤ r̃ ≤ dξK . We can assume that 〈ξj〉 + 〈ηj〉 ≤ 〈ξ`〉 + 〈η`〉 when

j ≤ `.

Let A = {([ξj], [ηj])}j∈N. It is easy to see that A has infinitely many elements. Define

̂̂u(ξ, η)mnrs =

 1, if ([ξ], [η]) = ([ξj], [ηj]) for some j ∈ N and (5.8) is satisfied,

0, otherwise.

By (1.43) and (1.45), it is easy to see that u ∈ Γ′(Mk)(G)\Γ(Mk)(G). Let us show that we have

Lu = f ∈ Γ(Mk)(G).

If ([ξ], [η]) 6= ([ξj], [ηj]) for any j ∈ N then ̂̂f(ξ, η) = 0. In the other hand, for everyK ∈ N,

we have

| ̂̂f(ξK , ηK)m̃1r̃1| = |λm̃(ξK) + cµr̃(ηK)|| ̂̂u(ξK , ηK)m̃1r̃1 |

≤ exp{−M(K(〈ξK〉+ 〈ηK〉))}

Therefore Lu = f ∈ Γ(Mk)(G), which contradicts the hypothesis.
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Notice that the conditions for the global Γ{Mk}−hypoellipticity of the Theorem 5.3 imply

the conditions for the global Γ(Mk)−hypoellipticity of the Theorem 5.11. In this way, we have

the following corollary:

Corollary 5.12. If L is globally Γ{Mk}−hypoelliptic, then L is globally Γ(Mk)−hypoelliptic.

For the study of global solvability in Komatsu classes of Beurling type, define

K := {f ∈ Γ′(Mk)(G); ̂̂f(ξ, η)mnrs = 0 whenever λm(ξ) + cµr(η) = 0}.

So, if f /∈ K then there are no u ∈ Γ′(Mk)(G) satisfying Lu = f .

Definition 5.13. We say the operator L is globally Γ′(Mk)-solvable if L(Γ′(Mk)(G)) = K.

We always have L(Γ′(Mk)(G)) ⊆ K. The next result give us the condition for the other

inclusion.

Theorem 5.14. The operator L = X1 + cX2 is globally Γ′(Mk)-solvable if and only if (5.7)

holds, that is, there exist C, N > 0 such that

|λm(ξ) + cµr(η)| ≥ C exp{−M(N(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη, whenever λm(ξ) + cµr(η) 6= 0. Moreover,

if L is globally Γ′(Mk)-solvable, for any admissible ultradifferentiable function f ∈ Γ(Mk)(G),

there exists u ∈ Γ(Mk)(G) such that Lu = f .

Proof. (⇐= ) For each f ∈ K define

̂̂u(ξ, η)mnrs =

 0, if λm(ξ) + cµr(η) = 0,

−i(λm(ξ) + cµr(η))−1 ̂̂f(ξ, η)mnrs , otherwise.

Let us show that { ̂̂u(ξ, η)mnrs} is the sequence of Fourier coefficient of an ultradistribution

u ∈ Γ′(Mk)(G). We have by hypothesis that

| ̂̂u(ξ, η)mnrs | = |λm(ξ) + cµr(η)|−1| ̂̂f(ξ, η)mnrs |

≤ C exp {M(N(〈ξ〉+ 〈η〉))}| ̂̂f(ξ, η)mnrs |

Using the fact that f ∈ Γ′(Mk)(G), we conclude that there exist C, N ′ > 0 such that

| ̂̂u(ξ, η)mnrs | ≤ C exp {M(N(〈ξ〉+ 〈η〉))} exp {M(N ′(〈ξ〉+ 〈η〉))},
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for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη. Let D = max{B,N}, so

| ̂̂u(ξ, η)mnrs | ≤ C exp {2M(D(〈ξ〉+ 〈η〉))} ≤ C exp {M(D̃(〈ξ〉+ 〈η〉))},

where D̃ = DH . Therefore u ∈ Γ′(Mk)(G) and Lu = f .

( =⇒ ) Suppose that is not true, then for any K ∈ N there exist [ξK ] ∈ Ĝ1 and [ηK ] ∈ Ĝ2

satisfying

0 < |λm̃(ξK) + cµr̃(ηK)| ≤ 1

K
exp{−M(K(〈ξK〉+ 〈ηK〉))}, (5.9)

for some 1 ≤ m̃ ≤ dξK and 1 ≤ r̃ ≤ dξK . We can assume that 〈ξj〉 + 〈ηj〉 ≤ 〈ξ`〉 + 〈η`〉 when

j ≤ `.

Define

̂̂f(ξ, η)mnrs =

 1, if ([ξ], [η]) = ([ξj], [ηj]) for some j ∈ N and (5.9) is satisfied,

0, otherwise.

Notice that f ∈ K. If Lu = f for some u ∈ Γ′{Mk}(G), then

̂̂u(ξK , ηK)m̃1r̃1 = −i(λm̃(ξK) + cµr̃(ηK))−1 ̂̂f(ξK , ηK)m̃1r̃1 .

So

| ̂̂u(ξK , ηK)m̃1r̃1| = |λm̃(ξK) + cµr̃(ηK)|−1| ̂̂f(ξK , ηK)m̃1r̃1|

≥ K exp{M(K(〈ξK〉+ 〈ηK〉))},

which implies that u /∈ Γ′(Mk)(G), a contradiction.

The proof of the last part of the theorem is analogous to the proof of Theorem 5.7 and then

its proof is omitted.

Similar to the smooth and Roumieu cases, we have the following corollaries:

Corollary 5.15. If L is globally Γ(Mk)-hypoelliptic, then L is globally Γ′(Mk)-solvable.

Corollary 5.16. If L is globally Γ′{Mk}-solvable, then L is globally Γ′(Mk)-solvable.

We can summarize the last corollaries about the operator L in the following diagram:

GH =⇒ GΓ{Mk}H =⇒ GΓ(Mk)Hww� ww� ww�
GS =⇒ GΓ′{Mk}S =⇒ GΓ′(Mk)S

(5.10)
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5.2.1 Komatsu levels

We can prove that the global Γ{Mk}(G)–hypoellipticity of the operator L implies its global

Γ(Mk)–hypoellipticity using what we will call Komatsu levels.

Definition 5.17. Let {Mk}k∈N be a sequence satisfying the conditions (M.0)–(M.3’) and let

N > 0. The Komatsu Level N of ultradifferentiable functions ΓNMk
(G) is the space of C∞

functions f on G such that there exists C > 0 satisfying

‖f̂(φ)‖HS ≤ C exp{−M(N〈φ〉)},

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

Notice that this definition is independent of the choice of the representative of [φ] ∈ Ĝ.

Moreover, we have

Γ{Mk}(G) =
⋃
N>0

ΓNMk
(G) and Γ(Mk)(G) =

⋂
N>0

ΓNMk
(G). (5.11)

Let us investigate how the operator L acts on Komatsu levels. For u ∈ ΓNMk
(G), we obtain

from (2.1) ̂̂Lu(ξ, η)mnrs = i(λm(ξ) + cµr(η)) ̂̂u(ξ, η)mnrs .

By (1.11), we have |λm(ξ)| ≤ 〈ξ〉 and |µr(η)| ≤ 〈η〉, so we have

‖̂̂Lu(ξ, η)‖HS ≤ C(〈ξ〉+ 〈η〉)‖ ̂̂u(ξ, η)‖HS.

By (1.36), there exists C > 0 such that 〈ξ〉 + 〈η〉 ≤ C exp{1
2
M(N(〈ξ〉 + 〈η〉))}. Using now

(1.14), we obtain

‖̂̂Lu(ξ, η)‖HS ≤ C exp
{
−M

(
Ñ(〈ξ〉+ 〈η〉)

)}
,

where Ñ = N
H

, which implies that Lu ∈ ΓÑMk
(G).

Assume that L is globally Γ{Mk}–hypoelliptic. In the proof of Theorem 5.3 we showed that

if Lu ∈ ΓNMk
(G), then u ∈ ΓÑMk

(G), where Ñ = N
H

. Let us prove that L is globally Γ(Mk)(G)–

hypoelliptic. If Lu ∈ Γ(Mk)(G), by (5.11) we get Lu ∈ ΓNMk
(G), for all N > 0 and then

u ∈ ΓÑMk
(G), for all Ñ > 0. Therefore u ∈ Γ(Mk)(G) and L is globally Γ(Mk)–hypoelliptic.

We also can prove that global Γ{Mk}–solvability implies global Γ(Mk)–solvability for the

operator L using Komatsu levels of ultradistributions.
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Definition 5.18. Let {Mk}k∈N be a sequence satisfying the conditions (M.0), (M.1), (M.2) and

(M.3’) and N > 0. The Komatsu Level N of ultradistributions Γ
′N
Mk

(G) is the space of linear

functionals u such that there exists C > 0 satisfying

‖û(φ)‖HS ≤ C exp{M(N〈φ〉)},

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

Similarly, we have

Γ′{Mk}(G) =
⋂
N>0

Γ
′N
Mk

(G) and Γ′(Mk)(G) =
⋃
N>0

Γ
′N
Mk

(G). (5.12)

Suppose that L is globally Γ′{Mk}–solvable. In the proof of Theorem 5.7 we showed that if

f is an admissible ultradistribution and f ∈ Γ
′N
Mk

(G), then there exists u ∈ Γ
′Ñ
Mk

(G) such that

Lu = f , where Ñ = NH .

Let us prove that L is globally Γ′(Mk)–solvable. Let f ∈ Γ′(Mk)(G) an admissible ultradistri-

bution. By (5.12), f ∈ Γ
′N
Mk

(G) for some N > 0 and then there exists u ∈ Γ
′Ñ
Mk

(G) such that

Lu = f , where Ñ = NH . Therefore L is globally Γ′(Mk)–solvable.

5.3 Examples

In this section we will consider the sequence {Mk}k∈N0 given by Mk = (k!)s, with s ≥ 1.

So, the Komatsu class of Roumieu type associated to this sequence is the Gevrey space γs(G)

and we have that the associated function satisfies

M(r) ' r1/s,

for all r ≥ 0.

In this framework we present a class of examples in T1 × S3 and in S3 × S3. Examples of

operators defined on tori in Gevrey spaces can be found on [3, 8].

Example 5.19. G = T1 × S3

Let

L = ∂t + cX,

where c ∈ C and X ∈ s3 is a normalized vector field on S3. With a similar analysis to that

Example 2.10, we may assume that

σX(`)mn = imδmn, ` ∈ 1
2
N0, −` ≤ m,n ≤ `, `−m, `− n ∈ N0.
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In this case, we have

N = {(k, `) ∈ Z× 1
2
N0; k + cm = 0, for some − ` ≤ m ≤ `, `−m ∈ N0}.

Notice thatN has infinitely many elements, so by Theorem 5.3 the operatorL is not globally

γs–hypoelliptic, for any s ≥ 1. Let us analyze the global γs–solvability of L. In order to L

satisfies Condition 2 of Theorem 5.3, for any B > 0 must there exist KB > such that

|k + cm| ≥ KBe
−(|k|+`)1/s , (5.13)

for all k ∈ Z, ` ∈ 1
2
N0, −` ≤ m ≤ `, ` −m ∈ N, whenever k + cm 6= 0. Notice that this is

satisfied when either Im(c) 6= 0 or c ∈ Q. In the case where c ∈ R \ Q, the condition (5.13)

is satisfied if and only if c is not an exponential Liouville number of order s. For instance, in

Example 2.10 we showed that

L = ∂t +
√

2X

is globally solvable. By Corollary 5.9, we conclude that L is globally γs–solvable, for any

s ≥ 1.

Consider now the operator

L = ∂t + αX,

where α is the continued fraction
[
101!, 102!, 103!, . . .

]
. We proved in Example 2.10 that L is

neither globally hypoelliptic nor globally solvable, because in this case N has infinitely many

elements and α is an irrational Liouville number. However, α is not an exponential Liouville

number, for any s ≥ 1 (see Proposition 6.2 of [3]). By Theorem 5.7, we conclude that L is

globally γs–solvable, for any s ≥ 1.

Example 5.20. G = S3 × S3

Consider the operator

L = X1 + cX2,

where X1, X2 ∈ s3 and c ∈ C. Here, we assume that the vector field X1 acts only in the first

variable, while X2 acts only in the second variable. As seen in Example 2.11, the analysis

of this operator is similar to the analysis of the operator studied in Example 5.19. Hence, the

operator L is not globally γs–hypoelliptic, for any s ≥ 1. If Im(c) 6= 0 or c ∈ Q, the operator L

is globally γs–solvable, for any s ≥ 1. When c ∈ R \Q, the operator L is globally γs–solvable

if and only if c is not an exponential Liouville number of order s. For instance, the operators

L = X1 +
√

2X2 and L = X1 + αX2,



Constant coefficient vector fields 105

where α =
[
101!, 102!, 103!, . . .

]
, are globally γs–solvable, for any s ≥ 1.

5.4 Low order perturbations

We can characterize the global hypoellipticity and global solvability of the operator

L = X + q,

where X ∈ g and q ∈ C, on Komatsu classes, both Roumieu and Beurling type, similarly to the

vector field case. We say that Lq is globally Γ{Mk}(G)–solvable if Lq(Γ{Mk}(G)) = Kq, where

Kq := {w ∈ Γ{Mk}(G); ŵ(ξ)mn = 0,whenever λm(ξ)− iq = 0}.

Analogously we define de global Γ(Mk)(G)–solvability of Lq.

Theorem 5.21. The operator Lq = X + q is globally Γ(Mk)-hypoelliptic (respectively, globally

Γ{Mk}-hypoelliptic) if and only if the following conditions hold:

1. The set

N = {[ξ] ∈ Ĝ;λm(ξ)− iq = 0, for some 1 ≤ m ≤ dξ}

is finite.

2. ∃N > 0 (respectively, ∀N > 0) and ∃C > 0 such that

|λm(ξ)− iq| ≥ C exp{−M(N〈ξ〉)},

for all [ξ] ∈ Ĝ, 1 ≤ m ≤ dξ, whenever λm(ξ)− iq 6= 0.

Moreover, the operator Lq is globally Γ(Mk)-solvable (respectively, globally Γ{Mk}-solvable) if

and only if Condition 2. above is satisfied.

The proof is similar to the vector field case and it will be omitted. We also have (6.13) for

this case.

Example 5.22. G = T1 × S3

Consider the following operator defined on T1 × S3:

L = ∂t +
√

2X + i1
2
.
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In Example 2.31 we have seen that L is globally hypoelliptic. By Corollary 5.4, we conclude

that L is globally γs–hypoelliptic, for any s ≥ 1.

Consider now the operator

L = ∂t + αX + i1
2
.

We have seen in Example 2.31 that this operator is neither globally hypoelliptic nor globally

solvable because although the set N is finite, the fact that α is an irrational Liouville number

implies that Condition 2 of Theorem 2.3 is not satisfied. However, since α is not an exponential

Liouville number, we conclude that L is globally γs–solvable, for any s ≥ 1. Similarly, we can

conclude that

L = ∂t + αX + iα

is not globally γs-hypoelliptic, but it is globally γs–solvable, for any s ≥ 1.

Example 5.23. G = S3 × S3

Let

L = X1 + αX2 + i1
2

be an operator defined on S3 × S3, where α =
[
101!, 102!, 103!, . . .

]
. In Example 2.32 we have

seen that the set N for this operator has infinitely many elements, which implies, by Theorem

5.21, that L is not globally γs–solvable, for any s ≥ 1. However, although L is not globally

solvable, by the fact that α is not an exponential Liouville number of order s, for any s ≥ 1, we

conclude that L is globally γs–solvable, for any s ≥ 1.

Consider now the operator

L = X1 + αX2 + i1
4
.

In this case the set N is empty and, again by the fact that α is not an exponential Li-

ouville number of order s, for any s ≥ 1, we conclude by Theorem 5.21 that L is globally

γs–hypoelliptic, for any s ≥ 1.



107

Chapter 6

Variable coefficient vector fields - Real case

6.1 Normal form

LetG1 andG2 be compact Lie groups and consider the operator La defined onG := G1×G2

by

La = X1 + a(x1)X2,

where X1 ∈ g1, X2 ∈ g2, and a ∈ Γ{Mk}(G1) is a real-valued function. Recall that for each

[ξ] ∈ Ĝ1, we can choose a representative ξ ∈ Rep(G1) such that

σX1(ξ)mn = iλm(ξ)δmn, 1 ≤ m,n ≤ dξ,

where λm(ξ) ∈ R for all [ξ] ∈ Ĝ1 and 1 ≤ m ≤ dξ. Similarly, for each [η] ∈ Ĝ2, we can choose

a representative η ∈ Rep(G2) such that

σX2(η)rs = iµr(η)δrs, 1 ≤ r, s ≤ dη,

where µr(η) ∈ R for all [η] ∈ Ĝ2 and 1 ≤ r ≤ dη.

Now assume that there exists A ∈ Γ{Mk}(G1) such that

X1A(x1) = a(x1)− a0,

for all x1 ∈ G1, where

a0 :=

∫
G1

a(x1) dx1.

By the definition of ultradifferentiable functions, there exist K, ` > 0 such that for all

α ∈ Nd1
0 holds

|∂αA(x1)| ≤ K ′`′|α|M|α|, ∀x1 ∈ G1.
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Since M|α| ≤ AH |α|M1M|α|−1, we obtain for all non-zero α ∈ Nd1
0

|∂αA(x1)| ≤ K`|α|−1M|α|−1, ∀x1 ∈ G1, (6.1)

where K = K ′`′HAM1 and ` = `′H .

Similarly, if A ∈ Γ(Mk)(G1), for any ` > 0 there exists K` > 0 such that for all non-zero

α ∈ Nd1
0 holds

|∂αA(x1)| ≤ K``
|α|−1M|α|−1, ∀x1 ∈ G1. (6.2)

Define the operator Ψa as:

Ψau :=
∑

[η]∈Ĝ2

dη

dη∑
r,s=1

eiµr(η)A(·)û( · , η)rs ηsr. (6.3)

In Section 3.1 of Chapter 3 it was proved that Ψa is an automorphism of C∞(G) andD′(G),

with inverse Ψ−a. Moreover, it holds

Ψa ◦ La = La0 ◦Ψa, (6.4)

where La0 = X1 + a0X2.

Since the operator La is the same as in Chapter 3, the expression (6.4) remains valid in

Komatsu classes. In the next results, we present sufficient conditions for the operator Ψa be

an automorphism in the space of ultradifferentiable functions and ultradistributions of both

Roumieu and Beurling types.

Proposition 6.1. Let a ∈ Γ{Mk}(G1). Then the operator Ψa, defined in (6.3), is an automor-

phism of Γ{Mk}(G1 ×G2).

Proof. It is enough to show that Ψau ∈ Γ{Mk}(G1 × G2) when u ∈ Γ{Mk}(G1 × G2). By

the characterization of ultradifferentiable functions of Roumieu type from their partial Fourier

coefficients, there exist C, h, ε > 0 such that

|∂αû(x1, η)rs| ≤ Ch|α|M|α| exp{−M(ε〈η〉)}, (6.5)

for all α ∈ Nd1
0 , x1 ∈ G1, [η] ∈ Ĝ2 and 1 ≤ r, s ≤ dη. Notice that

Ψ̂au(x1, η)rs = eiµr(η)A(x1)û(x1, η)rs

Thus, for α ∈ Nd1
0 we have

|∂αΨ̂au(x1, η)rs| =
∣∣∂α (eiµr(η)A(x1)û(x1, η)rs

)∣∣ ≤∑
β≤α

(
α

β

) ∣∣∂βeiµr(η)A(x1)
∣∣ ∣∣∂α−βû(x1, η)rs

∣∣ .
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Using that |µr(η)| ≤ 〈η〉 and (6.1), we have by Faà di Bruno’s Formula that

|∂βeiµr(η)A(x1)| ≤
|β|∑
k=1

Kk〈η〉k`|β|−k
 ∑
λ∈∆(|β|,k)

(
|β|
λ

)
1

r(λ)!

k∏
j=1

Mλj−1

 ,

where ∆(|β|, k) = {λ ∈ Nk; |λ| = |β| and λ1 ≥ · · · ≥ λk ≥ 1} and r(λ) ∈ Nd1
0 , where r(λ)j

counts how many times j appears on λ.

By property (M.4) of the sequence {Mk}k∈N0 we obtain(
|β|
λ

) |β|∏
j=1

Mλj−1 = |β|!
|β|∏
j=1

Mλj−1

λj!
≤ |β|!

|β|∏
j=1

Mλj−1

(λj − 1)!
≤ |β|!

M|β|−k
(|β| − k)!

, (6.6)

for λ ∈ ∆(|β|, k). Using the fact that∑
λ∈∆(|β|,k)

1

r(λ)!
=

(
|β| − 1

k − 1

)
1

k!
,

we have

|∂βeiµr(η)A(x1)| ≤
|β|∑
k=1

(
|β| − 1

k − 1

)
1

k!
Kk〈η〉k`|β|−k|β|!

M|β|−k
(|β| − k)!

(6.7)

By (6.5), we have

|∂αΨ̂au(x1, η)rs| ≤ C
∑
β≤α

(
α

β

) |β|∑
k=1

(
|β| − 1

k − 1

)
1

k!
Kk〈η〉k`|β|−k (6.8)

× |β|!
M|β|−k

(|β| − k)!
h|α|−|β|M|α|−|β| exp{−M(ε〈η〉)} (6.9)

By Proposition 1.35,

〈η〉k exp{−M(ε〈η〉)} ≤ A

(
H

ε

)k
Mk exp{−M(εH−1〈η〉)}.

So,

|∂αΨ̂au(x1, η)rs| ≤ AC
∑
β≤α

(
α

β

) |β|∑
k=1

(
|β| − 1

k − 1

)(
KH

`ε

)k
`|β|h|α|−|β|

× |β|!
M|β|−k

(|β| − k)!

Mk

k!
M|α|−|β| exp{−M(ε〈η〉)}.

Notice that

|β|!
M|β|−k

(|β| − k)!

Mk

k!
M|α|−|β| ≤ |β|!

M|β|
|β|!

M|α|−|β| ≤M|α|.

Denote by S = max{KH
ε
, `}. Thus

|∂αΨ̂au(x1, η)rs| ≤ AC
∑
β≤α

(
α

β

)
S|β|h|α|−|β|M|α| exp{−M(εH−1〈η〉)}

|β|∑
k=1

(
|β| − 1

k − 1

)
.
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We have
|β|∑
k=1

(|β|−1
k−1

)
= 2|β|−1. Moreover,

∑
β≤α

(
α

β

)
(2S)|β|h|α|−|β| =

|α|∑
|β|=0

(
|α|
|β|

)
(2S)|β|h|α|−|β| = (2S + h)|α|. (6.10)

In this way

|∂αΨ̂au(x1, η)rs| ≤ AC (2S + h)|α|M|α| exp{−M(εH−1〈η〉)}.

By Theorem A.8 we conclude that Ψau ∈ Γ{Mk}(G1 ×G2).

Proposition 6.2. Assume that a ∈ Γ(Mk)(G1). Then Ψa is an automorphism of Γ(Mk)(G1×G2).

Proof. Let u ∈ Γ(Mk)(G1 ×G2). By (6.1) we have that

|∂αA(x1)| ≤ K``
|α|−1M|α|−1, ∀x1 ∈ G1.

By Theorem A.9 for all h, ε > 0 there exists Chε > 0 such that

|∂αû(x1, η)rs| ≤ Chεh
|α|M|α| exp{−M(ε〈η〉)}, (6.11)

for all α ∈ Nd1
0 , x1 ∈ G1, [η] ∈ Ĝ2 and 1 ≤ r, s ≤ dη. We can follow the proof of Roumieu

type case and obtain

|∂αΨ̂au(x1, η)rs| ≤ Chε (2S + h)|α|M|α| exp{−M(εH−1〈η〉)},

where S = max{K`H
ε
, `}. Given j, δ > 0, choose ` = j

4
and ε = max

{
δH,

4KjH

j

}
. Thus

S = j
4

and

exp{−M(εH−1〈η〉)} ≤ exp{−M(δ〈η〉)},

for all [η] ∈ Ĝ2. Hence

|∂αΨ̂au(x1, η)rs| ≤ AChδ
(
j
2

+ h
)|α|

M|α| exp{−M(δ〈η〉)},

Choose now h = j
2
. Therefore

|∂αΨ̂au(x1, η)rs| ≤ Cjδj
|α|M|α| exp{−M(δ〈η〉)},

which implies that Ψau ∈ Γ(Mk)(G1 ×G2).

Proposition 6.3. For a ∈ Γ{Mk}(G1), the operator Ψa is an automorphism of Γ′{Mk}(G1×G2).
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Proof. Most of the estimate that we will use here was proved in the demonstration of Theorem

6.1. Let us show that Ψau ∈ Γ′{Mk}(G1 ×G2) when u ∈ Γ′{Mk}(G1 ×G2). By the characteriza-

tion of ultradistributions of Roumieu type (Theorem A.10) for all h, ε > 0, there exists Chε > 0

such that

|〈û( · , η)rs, ϕ〉| ≤ Chε‖ϕ‖h exp{M(ε〈η〉)}, ∀ϕ ∈ Γ{Mk}(G1).

In this way, for ϕ ∈ Γ{Mk}(G1), we have〈
Ψ̂au(·, η)rs, ϕ

〉
=
〈
eiµr(η)A(·)û(·, η)rs, ϕ

〉
=
〈
û(·, η)rs, e

iµr(η)A(·)ϕ
〉
.

Hence, 〈
û(·, η)rs, e

iµr(η)A(·)ϕ
〉
≤ Chε‖eiµr(η)A(·)ϕ‖h exp{M(ε〈η〉)}.

Notice that ∣∣∂α (eiµr(η)A(x1)ϕ(x1)
)∣∣ ≤∑

β≤α

(
α

β

) ∣∣∂βeiµr(η)A(t)
∣∣ ∣∣∂α−βϕ(t)

∣∣ .
By (6.7), using that |∂|α|A(x1)| ≤ K`|α|−1M|α|−1, we obtain

|∂βeiµr(η)A(x1)| ≤
|β|∑
k=1

(
|β| − 1

k − 1

)
1

k!
Kk〈η〉k`|β|−k|β|!

M|β|−k
(|β| − k)!

By Proposition 1.35,

〈η〉k exp{M(ε〈η〉)} ≤ Aε−kMk exp{M(Hε〈η〉)}

and then by the property (M.4) we obtain

∣∣∂α (eiµr(η)A(x1)ϕ(x1)
)∣∣ exp{M(ε〈η〉)} ≤ A

∑
β≤α

(
α

β

) |β|∑
k=1

(
|β| − 1

k − 1

)(
K

`ε

)k
`|β|M|β| (6.12)

×
∣∣∂|α|−|β|ϕ(x1)

∣∣ exp{M(Hε〈η〉)}

Let S = max
{
K
ε
, `
}

, then for any j > 0 we have

∣∣∂α (eiµr(η)A(x1)ϕ(x1)
)∣∣ exp{M(ε〈η〉)} ≤ A

∑
β≤α

(
α

β

)
S|β|M|β|

∣∣∂|α|−|β|ϕ(x1)
∣∣ |β|∑
k=1

(
|β| − 1

k − 1

)
× exp{M(Hε〈η〉)}

≤ A
∑
β≤α

(
α

β

)
(2S)|β|M|β| ‖ϕ‖j j

|α|−|β|M|α|−|β|

× exp{M(Hε〈η〉)}
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Using the fact that M|α|−|β|M|β| ≤M|α| and (6.10), we obtain

∣∣∂α (eiµr(η)A(t)ϕ(t)
)∣∣ exp{M(ε〈η〉)} ≤ A (2S + j)|α| ‖ϕ‖jM|α| exp{M(Hε〈η〉)}

Given j, δ > 0, choose ε = δ
H

and then h = 2S + j. Notice that

∥∥eiµr(η)A(·)ϕ
∥∥
h

exp{M(ε〈η〉)} ≤ A‖ϕ‖j exp{M(δ〈η〉)},

then we conclude that∣∣∣〈Ψ̂au(·, η)rs, ϕ
〉∣∣∣ ≤ Chε‖eiµr(η)A(·)ϕ‖h exp{M(ε〈η〉)}

≤ Cjδ‖ϕ‖j exp{M(δ〈η〉)}.

Therefore Ψau ∈ Γ′{Mk}(G1 ×G2) and then Ψa is an automorphism.

Proposition 6.4. For a ∈ Γ(Mk)(G1), the operator Ψa is an automorphism of Γ′(Mk)(G1 ×G2).

Proof. Let us show that Ψau ∈ Γ′(Mk)(G1 × G2) when u ∈ Γ′(Mk)(G1 × G2). By the charac-

terization of ultradistributions of Beurling type (Theorem A.11) there exist h, ε, C > 0 such

that

|〈û( · , η)rs, ϕ〉| ≤ C‖ϕ‖h exp{M(ε〈η〉)}, ∀ϕ ∈ Γ(Mk)(G1).

In this way, for ϕ ∈ Γ(Mk)(G1),〈
Ψ̂au(·, η)rs, ϕ

〉
=
〈
eiµr(η)A(·)û(·, η)rs, ϕ

〉
=
〈
û(·, η)rs, e

iµr(η)A(·)ϕ
〉
.

We have 〈
û(·, η)rs, e

iµr(η)A(·)ϕ
〉
≤ C‖eiµr(η)A(·)ϕ‖h exp{M(ε〈η〉)}.

Following the proof of the Proposition 6.3, by the fact that a ∈ Γ(Mk)(G1) we obtain

‖eiµr(η)A(·)ϕ‖2S+j exp{M(ε〈η〉)} ≤ A‖ϕ‖j exp{M(Hε〈η〉)},

where S = max
{
K`
ε
, `
}
. Now, choose ` = h

4
and consider ε sufficiently large such that S = `.

For j = h
2
, we obtain〈

Ψ̂au(·, η)rs, ϕ
〉
≤ C‖eiµr(η)A(·)ϕ‖h exp{M(ε〈η〉)}

≤ C‖ϕ‖h
2

exp{M(Hε〈η〉)},

which implies that Ψau ∈ Γ′(Mk)(G1 ×G2).
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6.1.1 Global Komatsu hypoellipticity and solvability

Let us turn our attention to the study of global properties of the operator La defined on the

compact Lie group G := G1 ×G2 by

La = X1 + a(x1)X2,

where X1 ∈ g1, X2 ∈ g2, and a ∈ Γ{Mk}(G1) (or a ∈ Γ(Mk)(G1)) is a real-valued function.

Recall that La0 = X1 + a0X2, where a0 :=
∫
G1
a(x1) dx1. Now, if La0u = f ∈ Γ′{Mk}(G),

for some u ∈ Γ′{Mk}(G), then

i(λm(ξ) + a0µr(η))̂̂u(ξ, η)mnrs = ̂̂f (ξ, η)mnrs ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, and 1 ≤ r ≤ dη. In particular, f belongs to the

following set

Ka0 := {g ∈ Γ′{Mk}(G1 ×G2); ̂̂g(ξ, η)mnrs = 0, whenever λm(ξ) + a0µr(η) = 0}.

In order to study the solvability of the operator La, assume that Lau = f ∈ Γ′{Mk}(G1×G2)

for some u ∈ Γ′{Mk}(G1 × G2). We can write u = Ψ−a(Ψau), so La(Ψ−a(Ψau)) = f . Thus,

using the fact that Ψa ◦ La = La0 ◦Ψa, we obtain Ψ−aLa0Ψau = f , that is,

La0Ψau = Ψaf.

This implies that Ψaf ∈ Ka0 and motivates the following definition:

Definition 6.5. We say that the operator La is globally Γ′{Mk}–solvable if La(Γ′{Mk}(G1 ×

G2)) = Ja, where

Ja := {v ∈ Γ′{Mk}(G1 ×G2); Ψav ∈ Ka0}.

Similarly is defined these global properties for Komatsu classes of Beurling type. Using the

results from the previous section, we obtain the following connection between the operator La

and its normal form, which proof will be omitted because is the same of the smooth case (see

Proposition 3.7).

Proposition 6.6. Let a ∈ Γ{Mk}(G1) (respectively, a ∈ Γ(Mk)(G1)) then:

1. the operator La is globally Γ{Mk}-hypoelliptic (respectively, Γ(Mk)-hypoelliptic) if and only

if La0 is globally Γ{Mk}-hypoelliptic (respectively, Γ(Mk)-hypoelliptic);
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2. the operator La is globally Γ{Mk}-solvable (respectively, Γ(Mk)-solvable) if and only if La0

is globally Γ{Mk}-solvable (respectively, Γ(Mk)-solvable).

From the automorphism Ψa we recover for the operator La the connection between the

different notions of global hypoellipticity and global solvability, obtained in Chapter 5, for

constant coefficients vector fields, summarized in the following diagram:

GH =⇒ GΓ{Mk}H =⇒ GΓ(Mk)Hww� ww� ww�
GS =⇒ GΓ′{Mk}S =⇒ GΓ′(Mk)S

(6.13)

Notice that we need to assume that a ∈ Γ(Mk)(G) for the implications involving Komatsu classes

of Beurling type.

Example 6.7. G = T1 × S3

Consider the continued fraction α =
[
101!, 102!, 103!, . . .

]
and a normalized vector field

X ∈ s3. Let La be the operator defined as

La = ∂t + a(t)X,

where a(t) = sin(t)+α. Notice that a ∈ γs(T1), for all s ≥ 1 and the functionA : t 7→ − cos(t)

satisfies ∂tA(t) = a(t)− α. By Proposition 6.6, we can study the global properties of La from

the operator

La0 = ∂t + αX.

In Example 5.19 we have seen that the operator La0 is globally γs–solvable, for any s ≥ 1. In

addition, since α is a Liouville number, the operator La0 is not globally solvable in the smooth

sense (Example 2.10).

We conclude then that the operator La is neither globally γs-hypoelliptic nor globally solv-

able in the smooth sense, but La is globally γs–solvable, for any s ≥ 1.

Example 6.8. G = S3 × S3

Consider the operator

Lh = X1 + h(x1)X2,

where X1, X2 ∈ s3, h is expressed in Euler’s angle by

h(x1(φ1, θ1, ψ1)) = − cos
(
θ1
2

)
sin
(
φ1+ψ1

2

)
+ α,
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where 0 ≤ φ1 < 2π, 0 ≤ θ1 ≤ π, −2π ≤ ψ1 < 2π, and α is the continued fraction[
101!, 102!, 103!, . . .

]
. Moreover, we will assume that the vector field X1 acts only in the first

variable, while X2 acts only in the second variable. Since X1tr(x1) = h(x1) − α, with tr as in

Example 3.12, it is enough to understand the global properties of the operator

Lh0 = X1 + αX2

for the study of the global properties of Lh. In Example 2.32 we have seen that the operator Lh0

is globally γs–solvable, for any s ≥ 1. In addition, since α is a Liouville number, the operator

Lh0 is not globally solvable in the smooth sense (Example 2.11).

Therefore, the operator Lh is neither globally γs–hypoelliptic nor globally solvable in the

smooth sense, but it is globally γs–solvable, for any s ≥ 1.

6.2 Low order perturbations

The next step for the study of low order perturbations is to consider the operatorLq := X+q,

where q ∈ Γ{Mk}(G). The idea is to establish a connection between the global hypoellipticity

and the global solvability in Komatsu sense of Lq and Lq0 = X + q0, where q0 is the average of

q in G.

In [5], Bergamasco proved that the operator

Lq = ∂t + a∂x + q,

where a ∈ R is an irrational non-Liouville number and q ∈ C∞(T2), is globally hypoelliptic

if and only if it is the operator Lq0 = ∂t + a∂x + q0, where q0 =
∫
T2 q(t, x) dxdt. The key

to make this connection is the fact that Lq ◦ e−Q = e−Q ◦ Lq0 , where Q ∈ C∞(T2) satisfies

(∂t + a∂x)Q = q − q0. The existence of such Q is guaranteed by the global hypoellipticity of

the operator ∂t + a∂x.

For the study of the operator L = X + q, with q ∈ Γ{Mk}(G), we can not assume the global

hypoellipticity of X in view of the Greenfield-Wallach’s conjecture. Hence, we will assume as

hypothesis that there exists Q ∈ Γ{Mk}(G) such that

XQ = q − q0,

where q0 =
∫
G
q(x) dx.
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From Proposition 3.16, we have

Lq ◦ e−Q = e−Q ◦ Lq0 , (6.14)

in C∞(G) and D′(G). The aim of the next lemma is to extend this conjugation to Komatsu

classes.

Lemma 6.9. If f ∈ Γ{Mk}(G), then ef ∈ Γ{Mk}(G).

Proof. By the characterization of ultradifferentiable function of Roumieu type, there exist

C, h > 0 such that

|∂αf(x)| ≤ Ch|α|M|α|,

for all α ∈ Nd
0, x ∈ G.

Let α ∈ Nd
0 such that |α| = p. We have that

|∂αef(x)| ≤ |ef(x)|hp
p∑

k=1

Ck

 ∑
λ∈∆(p,k)

(
p

λ

)
1

r(λ)!

k∏
j=1

Mλj

 ,

where ∆(p, k) = {λ ∈ Nk; |λ| = p and λ1 ≥ · · · ≥ λk ≥ 1} and r(λ) ∈ Nd
0, where r(λ)j

counts how many times j appears on λ. For example, λ = (2, 2, 1, 1) ∈ ∆(6, 4) and r(λ) =

(2, 2, 0, 0, 0, 0). Since
(
p
λ

)
= p!

λ1!···λk!
, by property (M.4) we obtain

(
p

λ

) k∏
j=1

Mλj = p!
k∏
j=1

Mλj

λj!
≤ p!

M|λ|
|λ|!

= Mp

Then

|∂αef(x)| ≤ KhpMp

p∑
k=1

Ck
∑

λ∈∆(p,k)

1

r(λ)!

We have that
p∑

k=1

Ck
∑

λ∈∆(p,k)

1

r(λ)!
=

p∑
k=1

(
p− 1

k − 1

)
Ck

k!
.

Therefore,
p∑

k=1

Ck
∑

λ∈∆(p,k)

1
r(λ)!
≤ 2peC and we obtain

|∂αef(x)| ≤ K(2h)pMp,

which implies that ef ∈ Γ{Mk}(G).

Remark 6.10. With a slight modification in the above proof it is possible that ef ∈ Γ(Mk)(G)

whenever f ∈ Γ(Mk)(G).
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From Lemma 6.9, we obtain that eQv ∈ Γ{Mk}(G), whenever v ∈ Γ{Mk}(G). Moreover, for

u ∈ Γ′{Mk}(G), we also have eQu ∈ Γ′{Mk}(G). The equality (6.14) motivates us to define the

global Γ′{Mk}–solvability of Lq as:

Definition 6.11. Let G be a compact Lie group, X ∈ g, and Q ∈ Γ{Mk}(G). We say that the

operator

Lq = X + q,

where XQ = q − q0, q0 =
∫
G
q(x) dx, is globally Γ′{Mk}–solvable if Lq(D′(G)) = Jq, where

Jq := {v ∈ Γ′{Mk}(G); eQv ∈ Kq0}.

Proposition 6.12. Let G be a compact Lie group and consider the operator L = X + q, where

X ∈ g and q ∈ Γ{Mk}(G). Assume that there exists Q ∈ Γ{Mk}(G) satisfying XQ = q − q0,

where q0 =
∫
G
q(x) dx. The operator Lq is globally Γ{Mk}–hypoelliptic if and only if Lq0 is

globally Γ{Mk}–hypoelliptic. Moreover, the operator Lq is globally Γ{Mk}–solvable if and only

if Lq0 is globally Γ{Mk}–solvable.

Proof. The proof is analogous to the demonstration of Theorem 3.7.

Corollary 6.13. If Lq is globally Γ{Mk}–hypoelliptic, then L is globally Γ{Mk}–solvable.

Example 6.14. G = T1 × S3

Consider

Lq = ∂t + αX + q(t, x),

where α =
[
101!, 102!, 103!, . . .

]
and q(t, x) = cos(t) + h(x) + 1

2
i, where h is expressed in

Euler’s angles by

h(x(φ, θ, ψ)) = − cos
(
θ
2

)
sin
(
φ+ψ

2

)
.

Notice that q is an analytic function, which implies that q ∈ γs(T1 × S3) for all s ≥ 1. Let

Q(t, x) = sin(t) + 1
α

tr(x), where tr is the trace function given in Euler’s angles by

tr(x(φ, θ, ψ)) = 2 cos
(
θ
2

)
cos
(
φ+ψ

2

)
.

The vector field X is the operator ∂ψ in Euler’s angle and we obtain Xtr(x) = h(x). Hence,

(∂t + αX)Q(t, x) = q(t, x)− 1
2
i,
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and by Proposition 6.12 it is enough to study the global properties of

Lq0 = ∂t + αX + 1
2
i.

In Example 5.22 we have seen that Lq0 is not globally γs–hypoelliptic but it is globally γs–

solvable, for any s ≥ 1. In addition, in Example 2.31 we have seen that the operator Lq0 is not

globally solvable in the smooth sense. Therefore, the operator

Lq = ∂t + αX + cos(t) + h(x) + 1
2
i

is not globally γs–hypoelliptic but it is globally γs–solvable, for any s ≥ 1. Moreover, Lq is not

globally solvable in the smooth sense. Similarly, we can conclude that

Lq = ∂t +
√

2X + cos(t) + h(x) + 1
2
i

is globally γs–hypoelliptic, for any s ≥ 1, because in Example 5.22 we have seen that the

operator Lq = ∂t +
√

2X + 1
2
i has this property.

Consider now the operator

Lq1 = ∂t + αX + q1(t, x),

where q1(t, x) = cos(t) + h(x) + αi. Analogously to the previous example, we have

(∂t + αX)Q(t, x) = q(t, x)− αi

and by Proposition 6.12, it is enough to study the operator

Lq10 = ∂t + αX + iα.

This operator was already completely characterized in Examples 2.31 and 5.22. Hence, we

conclude that

Lq1 = ∂t + αX + cos(t) + h(x) + αi

is not globally γs–hypoelliptic but it is globally γs–solvable, for any s ≥ 1. Moreover, Lq is not

globally solvable in the smooth sense.

Example 6.15. G = S3 × S3

Let us analyze the same operator studied in Example 3.23. Consider

L = X1 +
√

2X2 + q(x1, x2),
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where X1 acts in the first variable, X2 acts in the second variable, and q : S3 → C is expressed

in Euler’s angles by

q(x1, x2) = p1(x1) +
√

2 p2(x2) + 1
2
i,

where p1 and p2 are the projections of SU(2) ' S3 given in Euler’s angle by

p1(x(φ, θ, ψ)) = cos
(
θ
2

)
ei(φ+ψ)/2 and p2(x(φ, θ, ψ)) = i sin

(
θ
2

)
ei(φ−ψ)/2,

with 0 ≤ φ < 2π, 0 ≤ θ ≤ π, −2π ≤ ψ < 2π. Notice that q is an analytic function, so

q ∈ γs(T1 × S3), for any s ≥ 1. Moreover, the function Q(x1, x2) = 2i(p2(x2) − p1(x1))

satisfies

(X1 +
√

2X2)Q(x1, x2) = q(x1, x2)− 1
2
i.

The set N for the operator

L0 = X1 +
√

2X2 + 1
2
i

has infinitely many elements (see Example 2.32), so L is not globally γs–hypoelliptic, for any

s ≥ 1. Since L0 is globally solvable in the smooth sense, we conclude by Corollary 5.9 that L

is globally γs–solvable, for any s ≥ 1.

6.3 The general case

We can use the results about perturbations of constant coefficient vector fields presented in

Section 6.2 to study the operator Laq defined on G1 ×G2 by

Laq = X1 + a(x1)X2 + q(x1, x2),

where a ∈ Γ{Mk}(G1) is a real-valued ultradifferentiable function and q ∈ Γ{Mk}(G1 ×G2).

As discussed in Section 6.2, we will assume that there exists Q ∈ Γ{Mk}(G1×G2) such that

(X1 + a(x1)X2)Q = q − q0,

where q0 is the average of q in G1 ×G2. We have that eQ ∈ Γ{Mk}(G1 ×G2) and

eQ ◦ Laq = Laq0 ◦ eQ,

where Laq0 = X1 + a(x1)X2 + q0. Now, we obtain

Ψa ◦ Laq0 = La0q0 ◦Ψa,
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where La0q0 = X1 + a0X2 + q0. Therefore,

Ψa ◦ eQ ◦ Laq = Ψa ◦ Laq0 ◦ eQ = La0q0 ◦Ψa ◦ eQ.

The next result is a consequence of what was done previously.

Proposition 6.16. The operator Laq is globally Γ{Mk}–hypoelliptic if and only if La0q0 is glob-

ally Γ{Mk}–hypoelliptic. Similarly, the operator Laq is globally Γ{Mk}–solvable if and only if

La0q0 is globally Γ{Mk}–solvable.

Example 6.17. G = T1 × S3

Consider

Laq = ∂t + a(t)X + q(t, x)

where X ∈ s2, a(t) = sin(t) + α, and q(t, x) = cos(t) + (sin(t) + α)h(x) + 1
2
i, where h is

expressed in Euler’s angle by

h(x(φ, θ, ψ)) = − cos
(
θ
2

)
sin
(
φ+ψ

2

)
,

where 0 ≤ φ < 2π, 0 ≤ θ ≤ π, −2π ≤ ψ < 2π. Notice that q is an analytic function, which

implies that q ∈ γs(T1 × S3) for all s ≥ 1.

The vector field X is the operator ∂ψ in Euler’s angle and we have that Xtr(x) = h(x),

where the trace function tr is expressed in Euler’s angle by

tr(x(φ, θ, ψ)) = 2 cos
(
θ
2

)
cos
(
φ+ψ

2

)
.

The function Q(t, x) = sin(t) + tr(x) satisfies

(∂t + a(t)X)Q(t, x) = q(t, x)− 1
2
i.

By Proposition 6.16, the operator

Laq = ∂t + (sin(t) + α)X +
{

cos(t) + (sin(t) + α)h(x) + 1
2
i
}

is globally γs–hypoelliptic if and only if

La0q0 = ∂t + αX + 1
2
i

is globally γs–hypoelliptic. In Example 5.22 we have seen thatLa0q0 is globally γs–hypoelliptic,

for any s ≥ 1. We conclude that Laq is globally γs–hypoelliptic for any s ≥ 1, which implies
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that Laq is also globally γs–solvable, for any s ≥ 1. In addition, the operator Laq is neither

globally hypoelliptic nor globally solvable, because La0q0 has these properties.

Similarly, the operator

Laq = ∂t + (sin(t) + α)X + {cos(t) + (sin(t) + α)h(x) + αi}

is not globally γs–hypoelliptic but is globally γs–solvable because

La0q0 = ∂t + αX + αi

has these properties. Again, the operator Laq is neither globally hypoelliptic nor globally solv-

able.

Example 6.18. G = S3 × S3

Consider the operator

Lhq = X1 + h(x1)X2 + q(x1, x2),

where q is given by:

q(x1, x2) = p1(x1) + h(x1)p2(x2) + 1
2
i,

where p1 and p2 are the projections of SU(2) ' S3 given in Euler’s angle by

p1(x(φ, θ, ψ)) = cos
(
θ
2

)
ei(φ+ψ)/2 and p2(x(φ, θ, ψ)) = i sin

(
θ
2

)
ei(φ−ψ)/2,

where 0 ≤ φ < 2π, 0 ≤ θ ≤ π, −2π ≤ ψ < 2π. As in Example 3.23, the function Q(x1, x2) =

2i(p2(x2)− p1(x1)) satisfies

(X1 + h(x1)X2)Q(x1, x2) = q(x1, x2)− 1
2
i.

Since Q is analytic, we have that Q ∈ γs(S3 × S3), for any s ≥ 1. By Proposition 6.16, we can

extract the global properties of Lhq from the operator

Lh0q0 = X1 + αX2 + 1
2
i.

We have seen in Example 5.23 that the operator Lh0q0 is globally γs–hypoelliptic for any s ≥ 1,

but is not globally solvable (in the smooth sense). By Proposition 6.16, the operator Lhq has

these same properties.
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Appendices

A Partial Fourier series

Let G1 and G2 be compact Lie groups, and set G = G1 ×G2. Consider the representations

ξ ∈ Hom(G1,Aut(V1)) and η ∈ Hom(G2,Aut(V2)). The external tensor product representation

ξ ⊗ η of G on V1 ⊗ V2 is defined by

ξ ⊗ η : G1 ×G2 → Aut(V1 ⊗ V2)

(x1, x2) 7→ (ξ ⊗ η)(x1, x2) : V1 ⊗ V2 → V1 ⊗ V2

(v1, v2) 7→ ξ(x1)(v1)⊗ η(x2)(v2)

We point out that the external tensor product of unitary representation is also unitary. More-

over, if ξ ∈ Hom(G,U(dξ)) and η ∈ Hom(G,U(dη)) are matrix unitary representations, then

ξ ⊗ η ∈ Hom(G,U(dξdη)) is also a matrix unitary representation and

ξ ⊗ η(x1, x2) = ξ(x1)⊗ η(x2) ∈ Cdξdη×dξ×dη ,

where ξ(x1)⊗ η(x2) is the Kronecker product of these matrices.

It is enough to study continuous irreducible unitary representations of G1 and G2 to obtain

the elements of Ĝ, since for every [φ] ∈ Ĝ, there exist [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2 such that φ ∼ ξ⊗η,

that is, [φ] = [ξ ⊗ η] ∈ Ĝ and dφ = dξ · dη. Moreover, [ξ1 ⊗ η1] = [ξ2 ⊗ η2] if and only if

[ξ1] = [ξ2] and [η1] = [η2]. The proof of this fact can be found on [9] (Chapter II, Proposition

4.14). Therefore, the map [ξ ⊗ η] 7→ ([ξ], [η]) is a bijection from Ĝ to Ĝ1 × Ĝ2.

It is easy to see that LG = LG1 + LG2 , so we have ν[ξ⊗η] = ν[ξ] + ν[η]. Therefore we have

1

2
(〈ξ〉+ 〈η〉) ≤ 〈ξ ⊗ η〉 ≤ 〈ξ〉+ 〈η〉, (A.1)

for all [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2.
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Let f ∈ L1(G) and [φ] ∈ Ĝ. Let [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2 such that [φ] = [ξ ⊗ η]. Notice that

f̂(ξ ⊗ η) =

∫
G

f(x)(ξ ⊗ η)(x)∗ dx

=

∫
G2

∫
G1

f(x1, x2)(ξ(x1)⊗ η(x2))∗ dx1dx2

=

∫
G2

∫
G1

f(x1, x2)ξ(x1)∗ ⊗ η(x2)∗ dx1dx2.

Thus f̂(ξ ⊗ η) ∈ Cdξdη×dξdη with elements

f̂(ξ ⊗ η)ij =

∫
G2

∫
G1

f(x1, x2)(ξ(x1)∗ ⊗ η(x2)∗)ij dx1dx2

=

∫
G2

∫
G1

f(x1, x2)ξ(x1)nm η(x2)sr dx1dx2

where 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη are given by

m =
⌊
i−1
dη

⌋
+ 1,

n =
⌊
j−1
dη

⌋
+ 1,

r = i−
⌊
i−1
dη

⌋
dη,

s = j −
⌊
j−1
dη

⌋
dη.

Similarly for u ∈ D′(G), we have

û(ξ ⊗ η)ij =
〈
u, (ξ ⊗ η)ji

〉
=
〈
u, ξnm × ηsr

〉
,

where (ξnm × ηsr)(x1, x2) := ξ(x1)nmη(x2)sr.

Definition A.1. Let G1 and G2 be compact Lie groups and, set G = G1 × G2. Let f ∈ L1(G)

and ξ ∈ Rep(G1). The x1–Fourier coefficient of f is defined by

f̂(ξ, x2) =

∫
G1

f(x1, x2) ξ(x1)∗ dx1 ∈ Cdξ×dξ , x2 ∈ G2,

with components

f̂(ξ, x2)mn =

∫
G1

f(x1, x2) ξ(x1)nm dx1, 1 ≤ m,n ≤ dξ.

Similarly, for η ∈ Rep(G2), we define the x2–Fourier coefficient of f as

f̂(x1, η) =

∫
G2

f(x1, x2) η(x2)∗ dx2 ∈ Cdη×dη , x1 ∈ G1,

with components

f̂(x1, η)rs =

∫
G2

f(x1, x2) η(x2)sr dx1, 1 ≤ r, s ≤ dη.
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By the definition, the function

f̂(ξ, · )mn : G2 −→ C

x2 7−→ f̂(ξ, x2)mn

belongs to L1(G1) for all ξ ∈ Rep(G1), 1 ≤ m,n ≤ dξ. Similarly, the function

f̂( · , η)rs : G1 −→ C

x1 7−→ f̂(x1, η)rs

belongs to L1(G2) for all η ∈ Rep(G2), 1 ≤ r, s ≤ dη.

Let ξ ∈ Rep(G1) and η ∈ Rep(G2). Since f̂(ξ, · )mn ∈ L1(G2) for all 1 ≤ m,n ≤ dξ, we

can take its Fourier coefficient:

̂̂f(ξ, η)mn :=

∫
G2

f̂(ξ, x2)mnη(x2)∗ dx2 ∈ Cdη×dη

with components

̂̂f(ξ, η)mnrs =

∫
G2

f̂(ξ, x2)mnη(x2)sr dx2

=

∫
G2

∫
G1

f(x1, x2)ξ(x1)nm η(x2)sr dx1dx2,

for 1 ≤ r, s ≤ dη. Similarly, since f̂( · , η)rs ∈ L1(G1) for all 1 ≤ r, s ≤ dη, we can take its

Fourier coefficient:

̂̂f(ξ, η)rs :=

∫
G1

f̂(x1, η)rsξ(x1)∗ dx1 ∈ Cdξ×dξ

with components

̂̂f(ξ, η)rsmn =

∫
G1

f̂(x1, η)rsξ(x1)nm dx1

=

∫
G1

∫
G2

f(x1, x2)ξ(x1)nm η(x2)sr dx2dx1,

for 1 ≤ m,n ≤ dξ.

Notice that ̂̂f(ξ, η)mnrs = ̂̂f(ξ, η)rsmn = f̂(ξ ⊗ η)ij,

with

i = dη(m− 1) + r, j = dη(n− 1) + s,

for all 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη.
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Definition A.2. Let G1 and G2 be compact Lie groups, and set G = G1 ×G2. Let u ∈ D′(G),

ξ ∈ Rep(G1) and 1 ≤ m,n ≤ dξ. The mn-component of the x1–Fourier coefficient of u is the

linear function defined by

û(ξ, · )mn : C∞(G2) −→ C

ψ 7−→ 〈û(ξ, · )mn, ψ〉 :=
〈
u, ξnm × ψ

〉
G
.

In similar way, for η ∈ Rep(G2) and 1 ≤ r, s ≤ dη, we define the rs-component of the x2–

Fourier coefficient of u as

û( · , η)rs : C∞(G1) −→ C

ϕ 7−→ 〈û( · , η)rs, ϕ〉 := 〈u, ϕ× ηsr〉G.

By definition, û(ξ, · )mn ∈ D′(G2) and û( · , η)rs ∈ D′(G1) for all ξ ∈ Rep(G1), η ∈

Rep(G2), 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη.

Let ξ ∈ Rep(G1) and η ∈ Rep(G2). Since û(ξ, · )mn ∈ D′(G2) for all 1 ≤ m,n ≤ dξ, we

can take its Fourier coefficient:

̂̂u(ξ, η)mn := 〈û(ξ, · )mn, η∗〉 ∈ Cdη×dη

with components

̂̂u(ξ, η)mnrs = 〈û(ξ, · )mn, ηsr〉 =
〈
u, ξnm × ηsr

〉
G

=
〈
u, ξnm × ηsr

〉
G
,

for all 1 ≤ r, s ≤ dη. Now, since û( · , η)rs ∈ D′(G1) for all 1 ≤ r, s ≤ dη we can take its

Fourier coefficient: ̂̂u(ξ, η)rs := 〈û( · , η)rs, ξ
∗〉 ∈ Cdξ×dξ

with components

̂̂u(ξ, η)rsmn =
〈
û( · , η)rs, ξmn

〉
=
〈
u, ξnm × ηsr

〉
G

=
〈
u, ξnm × ηsr

〉
G
,

for all 1 ≤ m,n ≤ dξ. Notice that

̂̂u(ξ, η)mnrs = ̂̂u(ξ, η)rsmn = û(ξ ⊗ η)ij,

with

i = dη(m− 1) + r, j = dη(n− 1) + s,

for all 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη.
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Notice that

‖û(ξ ⊗ η)‖2
HS =

dξdη∑
i,j=1

|û(ξ ⊗ η)ij|2 =

dξ∑
m,n=1

dη∑
r,s=1

∣∣∣ ̂̂u(ξ, η)mnrs

∣∣∣2 =:
∥∥∥ ̂̂u(ξ, η)

∥∥∥2

HS
, (A.2)

for all [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2 whenever u ∈ L1(G) or u ∈ D′(G).

It follows from (A.1) and (A.2) the following adaption of Theorem 1.27 to characterize

smooth functions and distributions defined on a product of compact Lie groups:

Theorem A.3. Let G1 and G2 be compact Lie groups, and set G = G1 × G2 . The following

three statements are equivalent:

(i) f ∈ C∞(G);

(ii) For every N > 0, there exists CN > 0 such that

‖ ̂̂f(ξ, η)‖HS ≤ CN(〈ξ〉+ 〈η〉)−N , ∀[ξ] ∈ Ĝ1, [η] ∈ Ĝ2;

(iii) For every N > 0, there exists CN > 0 such that∣∣∣ ̂̂f(ξ, η)mnrs

∣∣∣ ≤ CN(〈ξ〉+〈η〉)−N , ∀[ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη.

Moreover, the following three statements are equivalent:

(iv) u ∈ D′(G);

(v) There exist C, N > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ C(〈ξ〉+ 〈η〉)N , ∀[ξ] ∈ Ĝ1, [η] ∈ Ĝ2;

(vi) There exist C, N > 0 such that∣∣∣ ̂̂u(ξ, η)mnrs

∣∣∣ ≤ C(〈ξ〉+ 〈η〉)N , ∀[ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη.

In the next results we will investigate when a sequence of partial Fourier coefficients can

define a smooth function or a distribution.

Theorem A.4. Let G1 and G2 be compact Lie groups, G = G1 ×G2, and let {f̂( · , η)rs} be a

sequence of functions on G1. Define

f(x1, x2) :=
∑

[η]∈Ĝ2

dη

dη∑
r,s=1

f̂(x1, η)rsηsr(x1).
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Then f ∈ C∞(G) if and only if f̂( · , η)rs ∈ C∞(G1), for all [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη and for

every β ∈ Nn
0 and ` > 0 there exist Cβ` > 0 such that

∣∣∂β f̂(x1, η)rs
∣∣≤ Cβ`〈η〉−`, ∀x1 ∈ G1, [η] ∈ Ĝ, 1 ≤ r, s ≤ dη.

Proof. (⇐= ) It is sufficient to consider N ∈ N in Theorem A.3 to conclude that f ∈ C∞(G).

Recall that−ν[ξ] is the eigenvalue of the Laplacian operatorLG1 associated to the eigenfunctions

{ξmn, 1 ≤ m,n ≤ dξ}, and we have

L̂G1g(ξ)mn =
〈
LG1g, ξnm

〉
=
〈
g,LG1ξnm

〉
= −ν[ξ]

〈
g, ξnm

〉
= −ν[ξ]ĝ(ξ)mn,

for all g ∈ C∞(G1), [ξ] ∈ Ĝ1, and 1 ≤ m,n ≤ dξ. In particular, for N ∈ N, we obtain

νN[ξ]|
̂̂f(ξ, η)rsmn| =

∣∣∣∣L̂NG1
f̂(ξ, η)rsmn

∣∣∣∣
=

∣∣∣∣∫
G1

LNG1
f̂(x1, η)rsξ(x1)nm dx1

∣∣∣∣
≤
∫
G1

|LNG1
f̂(x1, η)rs||ξ(x1)nm| dx1

≤
(∫

G1

|LNG1
f̂(x1, η)rs|2 dx1

)1/2(∫
G

|ξ(x1)nm|2 dx1

)1/2

≤ 1√
dξ

∑
|β|=2N

max
x1∈G1

|∂β f̂(x1, η)rs|

By Proposition 1.24, there exists C > 0 such that 〈ξ〉 ≤ Cν[ξ] for all non-trivial [ξ] ∈ Ĝ1. Thus

for all ` = N we have

| ̂̂f(ξ, η)rsmn| ≤ CN〈ξ〉−N〈η〉−N ≤ CN2N(〈ξ〉+ 〈η〉)−N .

Therefore f ∈ C∞(G).

( =⇒ ) Let E2 := (I − LG2)
1
2 . Since f ∈ C∞(G), for all β ∈ Nn

0 and N ∈ N0 we have

∂βEN
2 f ∈ C∞(G) and then, by the compactness of G, there exists CβN ≥ 0 such that

|∂βEN
2 f(x1, x2)| ≤ CβN , ∀(x1, x2) ∈ G1 ×G2. (A.3)



Appendices 128

Fix η ∈ Rep(G2), 1 ≤ r, s ≤ dη. We already know that f̂( · , η)rs ∈ C∞(G1). Moreover

|〈η〉N∂β f̂(x1, η)rs| = |∂βÊN
2 f(x1, η)rs|

=

∣∣∣∣∂β ∫
G2

EN
2 f(x1, x2)η(x2)sr dx2

∣∣∣∣
≤
∫
G2

|∂βEN
2 f(x1, x2)||η(x2)sr| dx2

≤
(∫

G2

|∂βEN
2 f(x1, x2)|2 dx2

)1
2
(∫

G2

|η(x2)sr|2 dx2

)1
2

(A.3)
≤ 1√

dη
CβN .

Therefore,

|∂β f̂(x1, η)rs| ≤ CβN〈η〉−N ,

for all x1 ∈ G1, [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη.

Theorem A.5. Let G1 and G2 be compact Lie groups, set G = G1 × G2, and let
{
û( · , η)rs

}
be a sequence of distributions on G1. Define

u =
∑
[η]∈Ĝ

dη

dη∑
r,s=1

û( · , η)rsηsr

Then u ∈ D′(G) if and only if there exist K ∈ N and C > 0 such that∣∣〈û(·, η)rs, ϕ〉
∣∣ ≤ C pK(ϕ)〈η〉K , (A.4)

for all ϕ ∈ C∞(G1) and [η] ∈ Ĝ, where pK(ϕ) :=
∑
|β|≤K

‖∂βϕ‖L∞(G1).

Proof. (⇐=) Take ϕ = ξnm, [ξ] ∈ Ĝ1, 1 ≤ m,n ≤ dξ. Let β ∈ Nn
0 , |β| ≤ K, with K as in

(A.4). Since the symbol of ∂β at x1 ∈ G1 and ξ ∈ Rep(G1) is given by

σ∂β(x1, ξ) = ξ(x1)∗(∂βξ)(x1),

we have

|∂βξnm(x1)| =

∣∣∣∣∣∣
dξ∑
i=1

ξni(x)σ∂β(ξ)im

∣∣∣∣∣∣
≤

dξ∑
i=1

|ξni(x)||σ∂β(ξ)im|

≤

 dξ∑
i=1

|ξni(x)2|

1/2 dξ∑
i=1

|σ∂β(ξ)im|2
1/2
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Let M ∈ Z satisfying M ≥ dimG1

2
. By (1.6) we have dξ∑

i=1

|ξni(x)2|

1/2

≤

 dξ∑
i=1

‖ξni‖2
L∞(G1)

1/2

≤ CM
√
dξ〈ξ〉M

and, by Proposition 1.25, there exists C > 0 such that

dξ ≤ C〈ξ〉M .

Moreover, notice that dξ∑
i=1

|σ∂β(ξ)im|2
1/2

≤ ‖σ∂β(ξ)‖HS ≤
√
dξ‖σ∂β(ξ)‖op ≤

√
dξC

|β|
0 〈ξ〉

|β|,

where the last inequalities come from (1.10) and (1.11). Hence

|∂βξnm(x1)| ≤ C〈ξ〉M
√
dξ‖σ∂β(ξ)‖HS

≤ C〈ξ〉Mdξ‖σ∂β(ξ)‖op

≤ CC
|β|
0 〈ξ〉

2M+|β|.

Then

pK(ξnm) = pK(ξnm) ≤ C〈ξ〉2M+K .

Hence

∣∣ ̂̂u(ξ, η)rsmn
∣∣ =

∣∣〈û(·, η)rs, ξnm
〉∣∣ ≤ C pK(ξnm)〈η〉K

≤ C〈ξ〉2M+K〈η〉2M+K

≤ C(〈ξ〉+ 〈η〉)2(2M+K).

Therefore u ∈ D′(G).

(=⇒) Since u ∈ D′(G), then there exist C > 0 and K ∈ N such that

∣∣ ̂̂u(ξ, η)rsmn
∣∣ ≤ C(〈ξ〉+ 〈η〉)K , (A.5)

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη, and 1 ≤ m,n ≤ dξ and

u =
∑

[ξ]∈Ĝ1

∑
[η]∈Ĝ

dξdη

dξ∑
m,n=1

dη∑
r,s=1

̂̂u(ξ, η)rsmnξnmηsr.
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For ϕ ∈ C∞(G1) we have

|〈û(·, η)rs, ϕ〉| = |(u, ϕ× ηsr)|

=

∣∣∣∣∣∣
∑

[ξ]∈Ĝ1

∑
[η]∈Ĝ

dξdη

dξ∑
m,n=1

dη∑
k,`=1

̂̂u(ξ, η)k`mn〈ξnm, ϕ〉G1
〈η`k, ηsr〉G2

∣∣∣∣∣∣
Notice that 〈η`k, ηsr〉G2

= 1
dη
δ`sδkr, since the set B is orthonormal (see (1.1)). Moreover,

ϕ̂(ξ)mn = 〈ξnm, ϕ〉G1
. So

|〈û(·, η)rs, ϕ〉|=

∣∣∣∣∣∣
∑

[ξ]∈Ĝ1

dξ

dξ∑
m,n=1

̂̂u(ξ, η)rsmnϕ̂(ξ)mn

∣∣∣∣∣∣
≤
∑

[ξ]∈Ĝ1

dξ

dξ∑
m,n=1

∣∣∣ ̂̂u(ξ, η)rsmn

∣∣∣ ∣∣ϕ̂(ξ)mn
∣∣

≤ C
∑

[ξ]∈Ĝ1

dξ

dξ∑
m,n=1

(〈ξ〉+ 〈η〉)K
∣∣ϕ̂(ξ)mn

∣∣ ,
where the last inequality comes from (A.5). Notice that for all K ∈ N it holds (〈ξ〉 + 〈η〉)K ≤

2K〈ξ〉K〈η〉K . In addition, we have

dξ∑
m,n=1

|ϕ̂(ξ)mn| ≤

d2
ξ

dξ∑
m,n=1

|ϕ̂(ξ)mn|2


1
2

= dξ‖ϕ̂(ξ)‖HS.

Since 〈ξ〉 =
〈
ξ
〉

and the summation is over all Ĝ1, we have

∑
[ξ]∈Ĝ1

dξ〈ξ〉K
dξ∑

m,n=1

|ϕ̂(ξ)mn| =
∑

[ξ]∈Ĝ1

dξ〈ξ〉K
dξ∑

m,n=1

|ϕ̂(ξ)mn| =
∑

[ξ]∈Ĝ1

dξ〈ξ〉K
dξ∑

m,n=1

|ϕ̂(ξ)mn|.

Thus

|〈û(·, η)rs, ϕ〉| ≤ C〈η〉K
∑

[ξ]∈Ĝ1

dξ〈ξ〉K
dξ∑

m,n=1

|ϕ̂(ξ)mn|

≤ C〈η〉K
∑

[ξ]∈Ĝ1

d2
ξ〈ξ〉K‖ϕ̂(ξ)‖HS

The series
∑

[ξ]∈Ĝ1

d2
ξ〈ξ〉−2t converges if and only if t > dimG1

2
, which implies that there exists

C > 0 such that dξ ≤ C〈ξ〉dimG1 , for all [ξ] ∈ Ĝ1. Hence,
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|〈û(·, η)rs, ϕ〉| = C〈η〉K
∑

[ξ]∈Ĝ1

(
dξ〈ξ〉− dimG1

) (
dξ〈ξ〉K+dimG1‖ϕ̂(ξ)‖HS

)

≤ C〈η〉K
∑

[ξ]∈Ĝ1

d2
ξ〈ξ〉−2 dimG1


1
2
∑

[ξ]∈Ĝ1

d2
ξ〈ξ〉

2(K+dimG1)‖ϕ̂(ξ)‖2
HS


1
2

≤ C〈η〉K
∑

[ξ]∈Ĝ1

dξ〈ξ〉2(K+2 dimG1)‖ϕ̂(ξ)‖2
HS


1
2

Let L ∈ N0 such that K + 2 dimG1 ≤ 2L. So

|〈û(·, η)rs, ϕ〉| ≤ C〈η〉K
∑

[ξ]∈Ĝ1

dξ〈ξ〉4L‖ϕ̂(ξ)‖2
HS


1
2

= C〈η〉K
∑

[ξ]∈Ĝ1

dξ‖Ê2L
1 ϕ(ξ)‖2

HS


1
2

= C〈η〉K‖E2L
1 ϕ‖L2(G1)

≤ C‖E2L
1 ϕ‖L2(G1)〈η〉2L,

where E1 = (I −LG1)
1
2 , and the last equality comes from the Plancherel formula (1.3). Notice

that

‖E2L
1 ϕ‖L2(G1) ≤ ‖E2L

1 ϕ‖L∞(G1) = ‖(I − LG1)
Lϕ‖L∞(G1) ≤ Cp2L(φ).

Therefore,

|〈û(·, η)rs, ϕ〉| ≤ Cp2L(φ)〈η〉2L.

Now we will present the characterization of ultradifferentiable functions and ultradistri-

butions in Komatsu classes of both Roumieu and Beurling types through the analysis of the

behavior of their partial Fourier series. First, as in the smooth case, we have the following

characterization of ultradifferentiable functions and ultradistributions:

Theorem A.6. Let G1 and G2 be compact Lie groups, and set G = G1 × G2 . The following

three statements are equivalent:

(i) f ∈ Γ{Mk}(G);
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(ii) There exist C,N > 0 such that

‖ ̂̂f(ξ, η)‖HS ≤ C exp{−M(N(〈ξ〉+ 〈η〉))}, ∀[ξ] ∈ Ĝ1, [η] ∈ Ĝ2;

(iii) There exist C,N > 0 such that∣∣∣ ̂̂f(ξ, η)mnrs

∣∣∣ ≤ C exp{−M(N(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη.

Moreover, the following three statements are equivalent:

(iv) u ∈ Γ′{Mk}(G);

(v) For every N > 0, there exists CN > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ CN exp{M(N(〈ξ〉+ 〈η〉))}, ∀[ξ] ∈ Ĝ1, [η] ∈ Ĝ2;

(vi) For every N > 0, there exists CN > 0 such that∣∣∣ ̂̂u(ξ, η)mnrs

∣∣∣ ≤ CN exp{M(N(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη.

Theorem A.7. Let G1 and G2 be compact Lie groups, and set G = G1 × G2 . The following

three statements are equivalent:

(i) f ∈ Γ(Mk)(G);

(ii) For every N > 0, there exists CN > 0 such that

‖ ̂̂f(ξ, η)‖HS ≤ CN exp{−M(N(〈ξ〉+ 〈η〉))}, ∀[ξ] ∈ Ĝ1, [η] ∈ Ĝ2;

(iii) For every N > 0, there exists CN > 0 such that∣∣∣ ̂̂f(ξ, η)mnrs

∣∣∣ ≤ CN exp{−M(N(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη.

Moreover, the following three statements are equivalent:

(iv) u ∈ Γ′(Mk)(G);
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(v) There exist C,N > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ C exp{M(N(〈ξ〉+ 〈η〉))}, ∀[ξ] ∈ Ĝ1, [η] ∈ Ĝ2;

(vi) There exist C,N > 0 such that∣∣∣ ̂̂u(ξ, η)mnrs

∣∣∣ ≤ C exp{M(N(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη.

Theorem A.8. Let G1 and G2 be compact Lie groups, set G = G1 × G2, and let f ∈ C∞(G).

Then f ∈ Γ{Mk}(G) if and only if f̂( · , η)rs ∈ Γ{Mk}(G1) for every [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη and

there exist h,C, ε > 0 such that

max
x1∈G1

|∂αf̂(x1, η)rs| ≤ Ch|α|M|α| exp{−M(ε〈η〉)}, (A.6)

for all [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη and α ∈ Nd1
0 .

Proof. ( ⇐= ) Let α ∈ N0. Recall that −ν[ξ] is the eigenvalue of the Laplacian operator LG1

associated to the eigenfunctions {ξmn, 1 ≤ m,n ≤ dξ}. By (1.7), we obtain

να[ξ]|
̂̂f(ξ, η)rsmn| =

∣∣∣∣L̂αG1
f̂(ξ, η)rsmn

∣∣∣∣
=

∣∣∣∣∫
G1

LαG1
f̂(x1, η)rsξ(x1)nm dx1

∣∣∣∣
≤
∫
G1

|LαG1
f̂(x1, η)rs||ξ(x1)nm| dx1

≤
(∫

G1

|LαG1
f̂(x1, η)rs|2 dx1

)1/2(∫
G

|ξ(x1)nm|2 dx1

)1/2

.

Notice that, by (1.1), we have ‖ξnm‖L2(G1) ≤ 1, for all [ξ] ∈ Ĝ1. Moreover, we can write LαG1

as a sum of dα1 derivatives of order 2α, where d1 = dimG1. So, by (A.6), we obtain

να[ξ]|
̂̂f(ξ, η)rsmn| ≤ Cdα1h

2αM2α exp{−M(ε〈η〉)}.

By Proposition 1.24, there existsC > 0 such that 〈ξ〉2 ≤ Cν[ξ], for all non-trivial representation.

By the property (M.2) of the sequence {Mk}, we have M2α ≤ AH2αM2
α. Thus

| ̂̂f(ξ, η)rsmn| ≤ C(
√
d1hH)2α〈ξ〉−2αM2

α exp{−M(ε〈η〉)}, ∀α ∈ N0
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Hence,

| ̂̂f(ξ, η)rsmn| ≤ C

(
inf
α∈N0

Mα

(〈ξ〉(
√
d1hH)−1)α

)2

exp{−M(ε〈η〉)

= C exp{−2M((
√
d1hH)−1〈ξ〉)} exp{−M(ε〈η〉)}

≤ C exp{−M((
√
d1hH)−1〈ξ〉)} exp{−M(ε〈η〉)}

Set 2N = min{(
√
d1hH)−1, ε}. In this way, we get

| ̂̂f(ξ, η)rsmn| ≤ C exp{−M(2N〈ξ〉)} exp{−M(2N〈η〉)}

and by Proposition 1.34,

| ̂̂f(ξ, η)rsmn| ≤ C exp{−M(N(〈ξ〉+ 〈η〉))},

for all [ξ] ∈ Ĝ1 non-trivial, [η] ∈ Ĝ2. It is easy to see that we can also obtain this inequality for

the trivial representation of G2 from the hypothesis. Therefore f ∈ Γ{Mk}(G).

( =⇒ ) We can characterize the elements of Γ{Mk}(G) as follows (Theorem 2.3 of [12]):

ϕ ∈ Γ{Mk}(G) if and only if there exist C, h > 0 such that

max
(x1,x2)∈G

|∂α1 ∂
β
2ϕ(x1, x2)| ≤ Ch|α|+|β|M|α|+|β|,

for all α ∈ Nd1
0 , β ∈ Nd2

0 .

For f ∈ Γ{Mk}(G) we have

νβ[η]|∂
α
1 f̂(x1, η)rs| = |∂α1 L̂

β
G2
f(x1, η)rs|

≤
∫
G2

|∂α1L
β
G2
f(x1, x2)||η(x2)sr| dx2

≤
(∫

G2

|∂α1L
β
G2
f(x1, x2)|2 dx2

)1/2(∫
G2

|η(x2)sr|2 dx2

)1/2

≤ 1√
dη

∑
|γ|=2β

max
(x1,x2)∈G

|∂α1 ∂
γ
2 f(x1, x2)|

≤ Cdβ2h
|α|+2βM|α|+2β,

where d2 = dimG2. Thus, when [η] is not trivial we obtain

|∂α1 f̂(x1, η)rs| ≤ Cdβ2h
|α|+2βM|α|+2β〈η〉−2β

≤ Ch|α|+2βAH |α|+2βM|α|h
2βdβ2M2β〈η〉−2β

≤ C(hH)|α|M|α|h
2βdβ2H

4βM2
β〈η〉

−2β

≤ C(hH)|α|Mα| exp{−2M((
√
d2hH

2)−1〈η〉)}

≤ C(hH)|α|Mα| exp{−M((
√
d2hH

2)−1〈η〉)}.
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Put h′ = hH and ε = (
√
d2hH

2)−1 to obtain

max
x1∈G1

|∂α1 f̂(x1, η)rs| ≤ Ch′
|α|
M|α| exp{−M(ε〈η〉)},

for all non-trivial [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη, α ∈ Nn
0 .

For [η] = [1G2 ] we have

|∂α1 f̂(x1,1G2)| =
∣∣∣∣∫
G2

∂α1 f(x1, x2) dx2

∣∣∣∣
≤ |∂α1 f(x1, x2)|

≤ Ch|α|M|α|.

In this way, adjusting C if necessary, we obtain

|∂α1 f̂(x1,1G2)| ≤ Ch|α|M|α| exp{−M(ε〈1G2〉)}.

In the next results, we will be concerned about estimates involving only non-trivial repre-

sentations since the trivial case is treated similarly as in the proof of Theorem A.8.

Theorem A.9. Let G1 and G2 be compact Lie groups, set G = G1 × G2, and let f ∈ C∞(G).

Then f ∈ Γ(Mk)(G) if and only if f̂( · , η)rs ∈ Γ(Mk)(G1) for every [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη and

for all h > 0 and ε > 0 there exists Chε > 0 such that

max
x1∈G1

|∂αf̂(x1, η)rs| ≤ Chεh
|α|M|α| exp{−M(ε〈η〉)},

for all [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη and α ∈ Nd1
0 .

Proof. (⇐= ) By the proof of Theorem A.8, we have

| ̂̂f(ξ, η)rsmn| ≤ Chε exp{−M((
√
d1hH)−1〈ξ〉)} exp{−M(ε〈η〉)}.

Given N > 0, choose h =
1

2
√
d1NH

and ε = 2N . So

| ̂̂f(ξ, η)rsmn| ≤ CN exp{−M(2N〈ξ〉)} exp{−M(2N〈η〉)}

≤ CN exp{−M(N(〈ξ〉+ 〈η〉))}.

Therefore f ∈ Γ(Mk)(G).
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( =⇒ ) We can characterize the elements of Γ{Mk}(G) as follows (see [12]): ϕ ∈ Γ{Mk}(G)

if and only if for all h > 0 there exists Ch > 0 such that

max
(x1,x2)∈G

|∂α1 ∂
β
2ϕ(x1, x2)| ≤ Ch|α|+|β|M|α|+|β|,

for all α ∈ Nd1
0 , β ∈ Nd2

0 . Let f ∈ Γ(Mk). In the proof of Theorem A.8 we have obtained

|∂α1 f̂(x1, η)rs| ≤ Ch(hH)|α|M|α| exp{−M((
√
nhH2)−1〈η〉)}

Given `, ε > 0. If `ε < (
√
nH)−1, take h = `H−1. In this case,

|∂α1 f̂(x1, η)rs| ≤ C`ε`
|α|M|α| exp{−M((

√
n`H)−1〈η〉)}

≤ C`ε`
|α|M|α| exp{−M((ε〈η〉)}

If `ε ≥ (
√
nH)−1, take h = (

√
nεH2)−1. So

|∂α1 f̂(x1, η)rs| ≤ C`ε(
√
nεH2)−|α|M|α| exp{−M((ε〈η〉)}

≤ C`ε`
|α|M|α| exp{−M((ε〈η〉)}

Theorem A.10. Let G1 and G2 be compact Lie groups, and set G = G1 × G2. Then u ∈

Γ′{Mk}(G) if and only if for all ε, h > 0 there exists Chε > 0 such that

|〈û( · , η)rs, ϕ〉| ≤ Chε‖ϕ‖h exp{M(ε〈η〉)}, ∀ϕ ∈ ΓMk
(G1),

where ‖ϕ‖h := sup
α,x1

∣∣∂αϕ(x1)
∣∣h−|α|M−1

|α| .

Proof. (⇐= ) Let ϕ = ξnm. We have

|∂βξnm(x1)| ≤ CC
|β|
0 〈ξ〉

p+|β|,

where p is any natural number satisfying p ≥ dimG
2

(see [11]). Then

|
〈
û( · , η)rs, ξnm

〉
| ≤ Chε‖ξnm‖h exp{M(ε〈η〉)}

= Chε sup
α,x1

|∂αξnm(x1)h−|α|M−1
|α| | exp{M(ε〈η〉)}

≤ Chε〈ξ〉p sup
α
|C |α|0 〈ξ〉

|α|h−|α|M−1
|α| | exp{M(ε〈η〉)}

= Chε〈ξ〉p exp{M(h−1C0〈ξ〉)} exp{M(ε〈η〉)}
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By Proposition 1.35, we have

〈ξ〉p exp{M(h−1C0〈ξ〉)} ≤ A(h−1C0)−pMp exp{M(Hh−1C0〈ξ〉)}.

By Proposition 1.34, we obtain

|
〈
û( · , η)rs, ξnm

〉
| ≤ Chε exp{M(H(Hh−1C0〈ξ〉+ ε〈η〉))}.

Given N > 0, choose h = H2C0

N
and ε = N

H
. In this way,

| ̂̂u(ξ, η)mnrs | ≤ CN exp{M(N(〈ξ〉+ 〈η〉))},

which implies that u ∈ Γ′{Mk}(G).

( =⇒ ) Since u ∈ Γ′{Mk}(G), for every ` > 0, there exists C` > 0 such that

|〈u, ψ〉| ≤ C` sup
α,β

`|α|+|β|M−1
|α|+|β|||∂

α
1 ∂

β
2ψ||L∞(G),

for all ψ ∈ Γ{Mk}(G). Given ϕ ∈ Γ{Mk}(G1), take ψ = ϕ× ηsr. Then

|〈û( · , η)rs, ϕ〉| = |〈u, ϕ× ηsr〉|

≤ C` sup
α,β

`|α|+|β|M−1
|α|+|β| sup

x1

|∂α1 ϕ(x1)| sup
x2

|∂β2 ηsr(x2)|

Similar to what was done above, we have

sup
β,x2

|∂β2 ηsr(x2)`|β|M−1
|β| | ≤ C` exp{M(H`C0〈η〉)}.

By the property M|α|M|β| ≤M|α|+|β| we obtain

|〈û( · , η)rs, ϕ〉| ≤ C` sup
α,x1

|∂α1 ϕ(x1)`|α|M−1
|α| | exp{M(H`C0〈η〉)}.

Given h, ε > 0. If εh ≤ C0H , take ` = ε
C0H

. Thus ` ≤ h−1 and

|〈û( · , η)rs, ϕ〉| ≤ Chε‖ϕ‖h exp{M(ε〈η〉)}.

On the other hand, if εh > C0H , take ` = h−1. Thus H`C0 < ε and

|〈û( · , η)rs, ϕ〉| ≤ Chε‖ϕ‖h exp{M(ε〈η〉)}.

Theorem A.11. Let G1 and G2 be compact Lie groups, and set G = G1 × G2 . Then u ∈

Γ′(Mk)(G) if and only if there exist ε, h, C > 0 such that

|〈û( · , η)rs, ϕ〉| ≤ C‖ϕ‖h exp{M(ε〈η〉)}, ∀ϕ ∈ Γ(Mk)(G1).

The proof of this theorem is analogous to the Roumieu case and it will be omitted.
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B Auxiliary results

Lemma B.1. Let λ ∈ C and consider the equation

d

dt
u(t) + λu(t) = f(t), (B.1)

where f ∈ C∞(T1).

If λ /∈ iZ then the equation (B.1) has a unique solution that can be expressed by

u(t) =
1

1− e−2πλ

∫ 2π

0

e−λsf(t− s) ds, (B.2)

or equivalently,

u(t) =
1

e2πλ − 1

∫ 2π

0

eλrf(t+ r) dr. (B.3)

If λ ∈ iZ and
∫ 2π

0
eλsf(s) ds = 0 then we have that

u(t) = e−λt
∫ t

0

eλsf(s) ds (B.4)

is a solution of the equation (B.1).

Proof. Notice that the function u defined in (B.2), (B.3), and (B.4) is a smooth function on T1.

Let us prove now that u defined in (B.2) is a solution of (B.1). Notice that

d

dt
u(t) =

(
1− e−2πλ

)−1
∫ 2π

0

e−λs
d

dt
f(t− s)ds

= −
(
1− e−2πλ

)−1
∫ 2π

0

e−λs
d

ds
f(t− s)ds

= −
(
1− e−2πλ

)−1 (
e−λsf(t− s)

)∣∣∣2π
s=0
−
∫ 2π

0

f(t− s)(−λ)e−λsds

= −
(
1− e−2πλ

)−1 (
e−2πλf(t− 2π)− f(t)

)
+ λ

∫ 2π

0

e−λsf(t− s)ds

= −
(
1− e−2πλ

)−1
f(t)

(
e−2πλ − 1

)
− λ

(
1− e−2πλ

)−1
∫ 2π

0

e−λsf(t− s)ds

= f(t)− λu(t)

Analogously we prove that u defined on (4.4) is a solution of (B.1). Finally, using the expression

on (B.4) we obtain

d

dt
u(t) = −λe−λt

∫ t

0

eλsf(s)ds+ e−λteλtf(t) = −λu(t) + f(t).

Therefore, the functions defined on (B.2), (B.3), and (B.4) are solutions of (B.1).
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The expressions (B.2) and (B.3) are actually equivalents. Indeed, we have

u(t) =
1

1− e−2πλ

∫ 2π

0

e−λsf(t− s) ds (B.2)

and make the substitution s 7→ −r + 2π. Hence, s = 0 implies that r = 2π and s = 2π implies

that r = 0. Moreover, ds = −dr. So

1

1− e−2πλ

∫ 2π

0

e−λsf(t− s) ds = − 1

1− e−2πλ

∫ 0

2π

eλ(r−2π)f(t+ r − 2π) dr.

Since f is 2π–periodic, we obtain

− 1

1− e−2πλ

∫ 0

2π

eλ(r−2π)f(t+ r − 2π) dr =
e−2πλ

1− e−2πλ

∫ 2π

0

eλrf(t+ r) dr.

Now, we have
e−2πλ

1− e−2πλ
=

1

e2πλ − 1
.

Therefore,

u(t) =
1

e2πλ − 1

∫ 2π

0

eλrf(t+ r) dr. (B.3)

Let us prove now that the equation (B.1) has a unique solution when λ /∈ iZ. Assume that

u1, u2 ∈ C∞(T1) are solutions of (B.1). For u = u1 − u2 we obtain

d

dt
u(t) + λu(t) = 0,

or equivalently,
d

dt

(
eλtu(t)

)
= 0,

which implies that u(t) = ce−λt, for some c ∈ C. By the fact that u is 2π–periodic, we have

u(t) = u(t+ 2π) = ce−λ(t+2π) = ce−λte−λ2π = u(t)e−λ2π,

for all t ∈ [0, 2π]. Since λ /∈ iZ, we have e−λ2π 6= 1 and we conclude that u ≡ 0, that is,

u1 = u2.

To conclude the proof let us see how to obtain the expressions (B.2), (B.3), and (B.4).

If λ ∈ iZ we have that the function t 7→ eλt is well-defined on T1 and so we can write (B.1)

as
d

dt

(
eλtu(t)

)
= eλtf(t).

Hence,

u(t) = e−λt
∫ t

0

eλsf(s)ds. (B.4)
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Since u must be 2π–periodic, we have u(2π) = u(0) = 0, that is,∫ 2π

0

eλsf(s)ds = 0.

Assume now that λ /∈ iZ and notice that E ∈ D′(T1) defined by E =
(
1− e−2πλ

)−1
e−λt is

a fundamental solution of the operator d
dt

+ λ. Hence, a solution of (B.1) can be expressed as

u(t) = (E ∗ f)(t) =

∫ 2π

0

(
1− e−2πλ

)−1
e−λsf(t− s)ds

=
1

1− e−2πλ

∫ 2π

0

e−λsf(t− s)ds (B.2)

Lemma B.2. Are equivalent:

1. There exist C,M > 0 such that

|k + c0µr(η)− iq| ≥ C(|k|+ 〈η〉)−M ,

for all k ∈ Z, [η] ∈ Ĝ, 1 ≤ r ≤ dη, whenever k + c0µr(η)− iq 6= 0.

2. There exist C,M > 0 such that

∣∣1− e±2πi(c0µr(η)−iq)∣∣ ≥ C〈η〉−M , (B.5)

for all [η] ∈ Ĝ, 1 ≤ r ≤ dη, whenever c0µr(η)− iq /∈ Z.

Proof. Assume that 2. does not hold, so for all j ∈ N there exist [ηj] ∈ Ĝ and 1 ≤ rj ≤ dηj

such that

0 <
∣∣∣1− e±2πi(c0µrj (ηj)−iq)

∣∣∣ < 1
j
〈ηj〉−j

Setting c0 = a0 + ib0, with a0, b0 ∈ R, we have that |Re(q) − b0µrj(ηj)| → 0 and there exists

a sequence of integers {kj} such that |kj + a0µrj(ηj) + Im(q)| → 0, when j →∞. Hence, by

the Mean Value Theorem we have∣∣∣1− e±2πi(c0µrj (ηj)−iq)
∣∣∣ ≥ ∣∣∣1− e±2π(Re(q)−µrj (ηj)b0)

∣∣∣ ≥ e−12π
∣∣Re(q)− µrj(ηj)b0

∣∣
and ∣∣sin (2π (kj + µrj(ηj)a0 + Im(q)

))∣∣ ≥ π
∣∣kj + µrj(ηj)a0 + Im(q)

∣∣ ,
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for j sufficiently large. Thus,

π
∣∣kj + µrj(ηj)a0 + Im(q)

∣∣ ≤ ∣∣sin (2π (kj + µrj(ηj)a0 + Im(q)
))∣∣

≤ 2e2π(Re(q)−µrj (ηj)b0)
∣∣sin (2π (kj + µrj(ηj)a0 + Im(q)

))∣∣
= 2

∣∣∣Im(1− e±2πi(µrj (ηj)c0−iq)
)∣∣∣

≤ 2
∣∣∣1− e±2πi(µrj (ηj)c0−iq)

∣∣∣ .
We conclude that for j sufficiently large there exists C > 0 such that

0 <
∣∣kj + µrj(ηj)c0 − iq

∣∣ ≤ ∣∣Re(q)− µrj(ηj)b0

∣∣+
∣∣kj + µrj(ηj)a0 + Im(q)

∣∣
≤ C

∣∣∣1− e±2πi(µrj (ηj)c0−iq)
∣∣∣

≤ C

j
〈ηj〉−j,

which implies that 1. is not satisfied.

Conversely, assume now that 1. is not valid, so for all j ∈ N there exist kj ∈ Z, [ηj] ∈ Ĝ

and 1 ≤ rj ≤ dηj such that

0 < |kj + µrj(ηj)c0 − iq| < 1
j
(|kj|+ 〈ηj〉)−j.

In particular, we have |kj + µrj(ηj)− iq| → 0 and |Re (q)− µrj(ηj)| → 0 when j →∞. The

ideas to verify that 2. does not hold is similar to the previous case and so the details is omitted.

For j sufficiently large, by Mean Value Theorem we obtain a constant C > 0 such that∣∣∣1− e±2πi(µrj (ηj)c0−iq)
∣∣∣ ≤ ∣∣∣1− e±2π(Re(q)−µrj (ηj)b0) cos

(
2π
(
µrj(ηj)a0 + Im(q)

))∣∣∣
+
∣∣∣e±2π(Re(q)−µrj (ηj)b0)

∣∣∣ · ∣∣sin (2π (µrj(ηj)a0 + Im(q)
))∣∣

≤
∣∣1− cos

(
2π
(
kj + µrj(ηj)a0 + Im(q)

))∣∣+∣∣∣1− e±2π(Re(q)−µrj (ηj)b0)
∣∣∣

+ e±2π(Re(q)−µrj (ηj)b0)
∣∣sin (2π (kj + µrj(ηj)a0 + Im(q)

))∣∣
≤ C

(∣∣kj + µrj(ηj)a0 + Im(q)
∣∣+
∣∣Re(q)− µrj(ηj)b0

∣∣)
≤ 2C|kj + µrj(ηj)c0 − iq|

≤ 2C
j

(|kj|+ 〈ηj〉)−j

≤ 2C
j
〈ηj〉−j,

and so Condition 2. is not satisfied.
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[2] G. Araújo. Regularity and solvability of linear differential operators in Gevrey spaces.

Math. Nachr., 291(5-6):729–758, 2018.

[3] A. Arias Junior, A. Kirilov, and C. de Medeira. Global Gevrey hypoellipticity on the torus

for a class of systems of complex vector fields. J. Math. Anal. Appl., 474(1):712–732,

2019.

[4] R. F. Barostichi, I. A. Ferra, and G. Petronilho. Global hypoellipticity and simultaneous

approximability in ultradifferentiable classes. J. Math. Anal. Appl., 453(1):104–124, 2017.

[5] A. P. Bergamasco. Perturbations of globally hypoelliptic operators. J. Differential Equa-

tions, 114(2):513–526, 1994.

[6] A. P. Bergamasco. Remarks about global analytic hypoellipticity. Trans. Amer. Math.

Soc., 351(10):4113–4126, 1999.

[7] A. P. Bergamasco, P. D. Cordaro, and G. Petronilho. Global solvability for a class of com-

plex vector fields on the two-torus. Comm. Partial Differential Equations, 29(5-6):785–

819, 2004.

[8] A. P. Bergamasco, P. L. Dattori da Silva, and R. B. Gonzalez. Global solvability and global

hypoellipticity in Gevrey classes for vector fields on the torus. J. Differential Equations,

264(5):3500–3526, 2018.
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[38] M. Ruzhansky, V. Turunen, and J. Wirth. Hörmander class of pseudo-differential operators

on compact Lie groups and global hypoellipticity. J. Fourier Anal. Appl., 20(3):476–499,

2014.

[39] M. Ruzhansky and J. Wirth. On multipliers on compact lie groups. Functional Analysis

and Its Applications, 47(1):72–75, Mar 2013.

[40] R. T. Seeley. Integro-differential operators on vector bundles. Trans. Amer. Math. Soc.,

117:167–204, 1965.

[41] M. E. Taylor. Fourier series on compact Lie groups. Proc. Amer. Math. Soc., 19:1103–

1105, 1968.


	Preliminaries
	Fourier analysis on compact Lie groups
	Representations of topological groups
	The Peter-Weyl decomposition
	Linear Lie groups and Lie algebras
	Function spaces

	Komatsu classes
	Associated function
	Komatsu class of Roumieu type
	Komatsu class of Beurling type


	I Smooth case
	Constant coefficient vector fields
	Global hypoellipticity
	Global solvability
	Examples
	Weaker notions of hypoellipticity
	Global hypoellipticity modulo kernel
	W–global hypoellipticity

	Low order perturbations

	Variable coefficient vector fields - Real case
	A class of vector fields with variable coefficients
	Normal form
	Global properties

	Perturbations of vector fields by functions
	The general case

	Variable coefficient vector fields - Complex case
	Global hypoellipticity
	Necessary conditions
	Sufficient conditions



	II Komatsu classes case
	Constant coefficient vector fields
	Global properties in Komatsu classes of Roumieu type
	Global properties in Komatsu classes of Beurling type
	Komatsu levels

	Examples
	Low order perturbations

	Variable coefficient vector fields - Real case
	Normal form
	Global Komatsu hypoellipticity and solvability

	Low order perturbations
	The general case

	Appendices
	Partial Fourier series
	Auxiliary results

	References


